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Combined Shewhart-Cusum Control Chart for Improved Quality

Control in Clinical Chemistry

James 0. Westgard,”3 Torgny Groth,2 Torsten Aronsson,1 and Carl-Henric de Verdler’

We describe the adaptation of the decision limit cumulative
sum method (cusum) to internal quality control in clinical
chemistry. With the decision limit method, the cusum is
interpreted against a numerical limit, rather than by use
of a V-mask. The method can be readily implemented in
computerized quality-control systems or manually on
control charts. We emphasize the manual application here
and demonstrate how the technique can be implemented
on existing Shewhart or Levey-Jennings control charts.
This permits both cusum and Shewhart control rules to be
used simultaneously on a single control chart and also
minimizes the data calculations necessary for the cusum
method. Computer simulation studies are used to deter-
mine the performance characteristics of several different
cusum rules, alone and in combination with a Shewhart
rule. These studies indicate that improvements in existing
quality-control systems should be possible by addition of
this simple cusum method and by use of a combined
Shewhart-cusum control chart. This should be particularly
advantageous when introducing the cusum method in
laboratories with manual quality-control systems.

Application of the cumulative sum quality-control
method (hereafter called “cusum”) has been limited in
clinical chemistry, even though the method appears to
have advantages in detecting systematic changes in the
analytical process. This lack of acceptance is partly due
to the additional effort required to calculate and
maintain the cusum control chart, but also due to the
qualitative manner in which the cusum chart is gener-
ally interpreted. There are techniques for quantitative
interpretation, most notably by use of “V-masks,” which
are templates that can be overlaid on the control charts.
These masks can be designed so that the control pro-
cedure provides a particular probability for detecting
a systematic change in the analytical process, as well as
providing a suitably low probability for rejection when
analytical disturbances are absent. However, their use

has not been readily accepted in clinical chemistry
laboratories, leaving the analyst to make some quali-
tative judgment by visual inspection of the control
chart.

There exists an alternative quantitative method for
interpreting the cusum control procedure, called the
“decision limit method” (1). In this method, the cusum
is interpreted against a numerical limit. The decision
limit method provides equivalent interpretation to that
by use of a V-mask, and in fact the performance char-
acteristics of a given V-mask can be transferred to
provide a comparable decision limit method. But use

of a numerical limit makes the interpretation easier,
both in computerized and manual applications.

Implementation in computerized quality-control
systems is simple and straightforward. Implementation
in manual systems can be aided by use of a combined
Shewhart-cusum control chart (S-CS control chart).
Using this approach, the decision limit cusum method
can be implemented by simple modifications of existing
Shewhart (2) or Levey-Jennings (3) control charts.4
Both the Shewhart and decision limit cusum methods
can be plotted simultaneously on this one control chart
and both are interpreted similarly against limit lines
drawn on that chart. Use of both methods on a single
control chart minimizes the work effort in introducing
and maintaining the decision limit cusum technique.

Use of the combined Shewhart-cusum control system
would be expected to provide an improved system for
internal quality control. The performance of a proposed
quality control system can be studied by determining
the probability for rejection in situations where differ-
ent amounts of analytical error are present. However,
the probability calculations become very complex when
combinations of control rules are considered. In
studying the performance of the combined Shewhart-
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The term “Shewhart control chart” is used here to refer to the
commonly used control chart in which the concentration measured
for a control solution is plotted on the y-axis vs. time (often the day)
on the x-axis. Shewhart actually introduced two charts, one for
plotting the mean of a group of observations and the other for plotting
the range of the observations. As applied in clinical chemistry, often
only a single control measurement is made and therefore only one
control chart is used.



Table 1. Example Cusum Calculation and Tabular
Record for the Case where a = 100, S = 5.0, k

= 105, k, = 95, h, = 13.5, and h, = -13.5

Control
observation Control

no. value

1 104
2 98
3 102

13.5

0

- 13.5

4 108
5 109
6 106
7 96

d CS1 Comment

3 3 Start cusum calcn
4 7
1 8

-9 -1 End cusum calcn

Start cusum calcn

Cusum control limit

CS

Cl - I,
Cusum co,,Irol limil

8
9

10
11

12
13

104
98
89 -6 -6
92 -3 -9
92 -3 -12
94 -1 -13
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Fig. 1. Decision limit cusumcontrol chart for example datagiven
in Table 1
The cusum plot is initiated when a control observation exceeds ± 1 Os. The
analytical method Is declared out-of-control when the cusum exceeds ±2.7s
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14 93 -2 -15 Out-of-control
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cusum control system, we use a computer simulation
approach (4) to estimate the probability for rejection
(a) when there are no analytical errors present except
for the inherent random error or imprecision of the
analytical method, (b) when there is a systematic shift
equivalent to 1.Os, where s is the standard deviation for
the control solution when analyzed by the analytical
method, (c) when there is a systematic drift equivalent
to 1.Os by the end of the analytical run, and (d) when
there is a 50% increase in random error. We use the
terms probability for false rejection in discussing sit-
uation a and probability for error detection for situa-
tions b-d.

Methods and Materials
Development of the Combined Shewhart-cusum
Control Chart

The decision limit cusum method is described in de-
tail in the Appendix. The method requires that values
be defined for the mean, xa, and standard deviation, s,
for a particular control solution when analyzed by the
analytical method of interest, and also for the level at
which the cusum calculations are initiated, k, and the
numerical control limit for the cusum, h.

To illustrate how the decision limit cusum method
works, an example set of data is given in Table 1. Here

is 100, s is 5.0, the k-values are 95 (lower level, k1) and
105 (upper level, ku), and the control limits are ± 13.5
(upper and lower control limits, h and hi). The cusum
calculation is first initiated when a control observation
exceeds ak -value, in this example when the 4th obser-
vation is obtained. The difference (d1) between the
control value and the k-value is calculated, and then
successive differences are summed to give the cusum
(CS1). When the cusum changes sign, as for the 7th
observation in Table 1, the cusum calculation is termi-

.
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Fig. 2. Decision limitcusumcontrol chart for which a tabulardata
record is not required

nated until one of the k-values is again exceeded. At the
10th observation, the cusum is initiated again and at the
14th observation, the cusum exceeds the control limit
(hi = -13.5). The analytical method should be declared
out-of-control. When the disturbance is corrected and
the method re-started, the cusum would start over again
at zero.

The cusum values can be plotted on an individual
cusum control chart such as the one shown in Figure 1.
This control chart must be used together with a tabular
record such as that shown in Table 1. Implementation
of this control chart is simple, but it does require con-
siderable work to maintain both the tabular record and
the control chart. This would be particularly noticeable
when the cusum method is added to an existing control
system where Shewhart charts are already used.

However, the cusum method can be implemented
without need for a separate tabular record by use of a
control chart such as that in Figure 2. Here the control
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Fig. 3. Combined Shewhart-decision limit cusum control chart
(S-CS chart)
The analytical method is declared out-of-control when a single control obser-

vation exceeds ± 3.09s or when the cusum exceeds ±2.7s

chart is prepared by drawing a line for the mean (ia),

k-lines (x0 ± 1.Os in this example), and lines for the
control limits (conveniently drawn at ± 2.7s for this
example). The y-axis is given in concentration units, so
that the observed control values can be plotted directly
on the chart. For the example set of data in Table 1, the
control values are shown in Figure 2 by the solid black
circles or points. When a control value first exceeds a
k-line, then the distance of the point from the k-line can
be measured with a ruler or a compass, or counted in
arbitrary chart units. This distance (actually d1) is then
plotted taking the mean line (x) as the zero line for the
cusum plot. For each additional point, the distance from
the k-line is added or subtracted from the previous
distance, giving a total distance that represents the
cusum (CS1). When this distance exceeds the distance
of the control line from the mean line, which is 2.7s,then
the method is declared out-of-control.

This control chart really has two scales on the y-axis,
the first for plotting the absolute control values and the
second for plotting the cusum. However, it is not actu-
ally necessary to use the second scale because no nu-
merical calculations or numerical values are required
when the cusum is measured graphically in terms of
distance.

The similarity between this control chart and the
commonly used Shewhart chart is readily apparent. The
decision limit cusurn method can be implemented on
existing Shewhart charts by drawing the additional
k-lines and cusum control limits. Figure 3 shows such
a combined Shewhart-cusum control chart (S-CS
chart) which will permit the use of both shewhart and
cusum control rules simultaneously on one control
chart. This S-CS control chart initially appears some-
what complicated because of the many lines; however,
the use of appropriate color coding will serve to separate
the Shewhart and cusum data and to identify their re-
spective control limits. It may also be possible to elim-
inate some of the lines, perhaps by removing the 2s

Table 2. Decision Limit Cusum Rules Tested via
Computer Simulation Studies

Control
Symbol k-lIme lImits SEd

CS1 a ± 1.Os ±2.7s 2.Os
cs ± 1.Os ±3.Os 2.Os
cs ± 0.8s ±3.Os 1.6s
CS1 ka ± 0.6s ±3.Os 1.2s
CS1 ± 0.5s ±5.ls 1.Os

warning limits, or using a common control line for both
the Shewhart and cusum methods (see Discussion
section).

Control Rules Studied

Several different decision limit cusum rules were
studied by use of computer simulation in order to
compare their performance. The different rules are
listed in Table 2. The rules are identified by symbols
which have the general format CSflh k Here CS stands
for a cusum rule, n is the number of control measure-
ments included in the control observation that is tested
(which is 1 for all the rules studied here), k is the level
at which the cusum is initiated, and h is the control
limit.

Combinations of cusum and Shewhart rules were
studied, and Shewhart rules are identified by similar
though simpler symbols. The symbol 1 refers to the
Shewhart rule where the method is declared out-of-
control when one observation exceeds a 3.09s limit. The
symbol 12.7shas similar meaning, except that the control
limit is 2.7s. The symbol lo.oj refers to a control rule
where the control limit has been calculated at each N
in order to maintain a constant probability of 0.01 for
false rejections (4).

Cusum rules CS 1 and CS 1 were chosen to have
a low probability for false rejections, approximately
0.002. The other rules were selected because they would
be simpler to adapt to existing Shewhart control
charts.

Computer Simulation Studies

Sixteen hundred analytical runs were simulated for
estimating the probability for false rejections and 400
for estimating the probability for error detection (for
each type of error studied). The proportion of runs re-
jected was calculated and this was taken as the estimate
of the probability for rejection (p). Repeated simula-
tions of a systematic shift equivalent to 1.Os showed that
the probability estimates had a standard deviation of
approximately 0.005 to 0.03, depending on the magni-
tude of p itself. For higher p ‘s, s tended towards the
higher values. For four simulations, the average p’s for
the 13 points used to draw the p vs. N response curves
were 0.417,0.409,0.408, and 0.402. The computer sim-
ulation procedure itself is described in more detail in
reference 4.
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Fig. 4. Responses of individual decision limit cusum control rules
to a systematic shift equivalent to 1.Os(top part of figure) and
when no analytical errors are present (bottom part of figure)
In FIgures 4-9. the probability for rejection (p) is plotted vs. the nurrter of control
observations (N)
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Fig. 5. Responsesof individual decision limit cusum control rules
to a systematic drift equivalent to 1.Os

p

FIg. 6. Responses of individualdecision limit cusum control rules
to a 50 % increase in random error

N
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Results of Simulation Studies

The results are presented graphically in Figures 4-8,
where the probability for rejection (p) is plotted on the
y-axis vs. the number of control observations (N) on the
x -axis. Figures 4-6 present the results for the individual
cusum rules and different error situations. Figures 7 and
8 present results for combination rules, where a cusum
rule has been combined with a rule for a Shewhart
control chart.

The lower part of Figure 4 shows the probability for

false rejections (Pfr), i.e., the probability for rejection
when the analytical process is running acceptably and
there are no analytical errors present except for the
inherent random error or imprecision of the analytical
method. It is desirable that this be low. All rules except
CS1 show Pfr to be 0.05 or less for N up to 28. This
means that when 25 or so observations are collected,
there is a 5% chance that there will be an out-of-control
indication. This is about comparable to the level of false
rejections observed when using ±3.09s limits on a
Shewhart control chart (4, see Figure 1).

The upper part of Figure 4 shows the probability for
error detection (pj), in this case for a systematic shift
equivalent to 1.Os. When N is high, rule CS1 has the
highest probability for detecting the error. Rules CS1
and CS show good responses, and at low N, CS i9
is actually more sensitive. Rules CS1 and CS1 show
the lowest responses.

Figure 5 shows the probabilities for detecting a sys-
tematic drift equivalent to 1.Os by the end of an ana-
lytical run. Rule CS1f again is most sensitive for high
N. For low N, rules CS1 and CS19 are somewhat
more sensitive. Rules CS1 and CS1:8 again show
relatively poor performance.

Figure 6 shows the responses to a 50% increase in
random error. The cusum rules are seen to be quite re-
sponsive to an increase in random error, even though
they are usually of interest for detecting systematic
errors.

The lower part of Figure 7 shows the probability for
false rejection for the combination rules. The combi-
nations 12.73/CS1: and 13.08/CS1 show the highest
probability for false rejections, exceeding 0.10 or 10%
as 20 or so control observations are accumulated.
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Fig. 7. Responses of combination Shewhart-decision limit
cusum rules to a systematic shift equivalent to 1.Os(top part of
figure) and when no analytical errors are present (bottom part
of figure)

N N

p

Fig. 8. Responses of combination Shewhart-decision limit

cusum rules to a 50% increase in random error

p

Fig. 9. Comparison of the responses of the combination
135/CS1#{176}Shewhart-cusum rules (S-CS) with the Shewhart

rule alone for different error situations: no analytical errors,
a systematic drift equivalent to 1.Os, and a systematic shift
equivalent to 1.Os

N
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The upper part of Figure 7 shows the responses of the
combination rules to a systematic shift equivalent to
1.Os. The combination rules show the same relative
order of ability to detect the systematic error as ob-
served in Figure 4, though the absolute values are
somewhat higher for some of the rules. For a systematic
drift equivalent to 1.Os, the responses were very similar
to those shown earlier in Figure 5.

Figure 8 shows the responses to a 50% increase in
random error. The combination rules show higher
probabilities for detecting the analytical disturbance
because all the individual rules have some ability to
detect increases in random error.

Discussion

Use of a combined Shewhart-cusum control chart
(S-CS chart), such as the one shown in Figure 3, pro-
vides improved detection of systematic errors. The
amount of improvement over the commonly used
Shewhart method with a 138 rule is shown by the simu-
lation results in Figure 9. The probability for detecting
systematic shifts and drifts equivalent to 1.Os should be
about doubled by use of the S-CS chart (compare the
S-CS 1.Os shift line with the 1:31shift line, and the S-CS
1.Os drift line with the 138 drift line). This is achieved
at a relatively small increase in the probability for false
rejections (compare the no-error lines for S-CS and
138).

Similar, though not identical, improvements in per-
formance can be expected from use of some of the other
cusum rules studied here. The choice between these
rules depends on the particular laboratory applica-
tion.

The rule CS1g appears to offer the best perfor-

mance, having a low probability for false rejections and
a high probability for error detection. However, it would
probably be difficult to implement this rule on existing
Shewhart charts because the large values for the control
limits would be unlikely to fit on the charts. It could be
implemented by using separate cusum control charts,
but this is unlikely to be accepted in busy clinical lab-
oratories. It is obvious that this rule could be readily
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Fig. 10. A simplified combined Shewhart-decision limit cusum
control chart (S-CS chart) where the same control limits are used
for both the Shewhart and cusum methods

implemented in quality-control systems having com-
puterized data calculations, as could rules where more
than one control measurement is averaged to give the
control observation to be tested. In computerized sys-
tems, the cusum could be used along with rules for the
mean and range, and it would be expected to offer
similar improvements in detecting systematic errors.
Our concern here has been for implementation in
quality-control systems where data handling is per-
formed manually.

In applications where a simpler appearing control
chart is desired, a chart like the one in Figure 10 could
be used. The S-CS chart then only needs the mean line,
k-lines, and one set of control limit lines. One possibility
is to set the k-lines to ± 1.Os and the control limits
at i ± 2.7s, as is done in Figure 2. This gives a
1275/CS1 Shewhart-cusum combination that would
provide an improved probability for error detection,
particularly when it is also of interest to detect random
as well as systematic errors. This combination has a
higher probability for false rejections and its practicality
depends on whether this is tolerable in the particular
application of interest.

In applications where the existing Shewhart control
charts have 3.Os control limits, it would be easiest to use
a cusum rule with a 3.Os limit, particularly when first
introducing the method. The probabilities for false re-
jection and error detection will depend on where the
k-lines are drawn. The closer the k -lines are to the mean
line, the higher are the probabilities for false rejection
and error detection. Again, choice of the cusum rule is
likely to depend on the level of false rejections that is
tolerable. It may be desirable to start initially with k -

lines at a ± 1.Os, then lower the lines to ± 0.8s and

a ± 0.6s in succeeding months.
In addition to improvements in the ability to detect

systematic errors, use of the S-CS control chart should
also help distinguish between random and systematic
errors. This additional information would be useful in

solving out-of-control problems. When the cusum limit
alone is exceeded, the error is more likely to be sys-
tematic in nature. When the Shewhart limit alone is
exceeded, the error is more likely to be random in na-
ture. When both are exceeded, visual inspection of the
plotted data should be helpful. A relatively smooth
cusum line suggests a mainly systematic error, whereas
a cusum line with many abrupt changes suggests that
random error is large. Such problem solving will be
greatly aided by familiarity with the analytical method
and by experience with the S-CS control chart.

During the course of this work, J.0.W. was supported by project
grant 170794 from the Graduate School Research Committee, Uni-

20 versity of Wisconsin-Madison. Computer support was provided by
the Uppsala University Data Center and fmanced by funds from the
University to the Medical Faculty. We thank Mr. Hans Falk for per-
forming the computer programming and data simulations.

Description of the Decision Limit Cusum Method

In this technique, a reference point k is chosen to be
halfway between the mean where the process is in
stable or acceptable operation, and the mean (yr), where
the process is considered to be disturbed and the ana-
lytical run should be rejected.

(1)
The cusum calculation is initiated when a control ob-
servation first exceeds k. For this particular observation,
called x, and for succeeding observations, called x, the
individual differences, d1, are calculated.

d=x-k;i=j,j+1,... (2)

They are summed to give the cusum (CS).

CS1=d1+d1+1+-.-+d (3)

This continues until one of the following two situations
occurs: (a) The sign of the cusum changes, indicating
that the process has changed direction, in which case the
process is considered to be “in-control” and the cusum
calculation is stopped. (b) The cusum exceeds a control
limit h, in which case the process is declared “out-of-

control” and should be stopped.
Notice that no cusum calculations are performed

until an initial control observation exceeds k. Calcula-
tions are started when the process starts to show some
deviation from the process mean (x). No effort is re-
quired when the process is running in good control.

In designing a decision limit cusum scheme, values
must be obtained fork and h. To define k, it is necessary
to state the process mean at which the quality is con-
sidered unacceptable and the output should be rejected

(yr). This may more easily be done by considered the
systematic error that one wishes to detect (SEd), which
is equal to the difference between the two means (SEd
= I - I).It is convenient to then express SEd in
terms of s, which is the inherent random error or im-
precision of the analytical method, and n, which is the
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number of measurements included in the control ob-
servation that is to be tested. An upper limit for k is
given by

- SEd
= x0 +

2v

A lower limit for k is given by

- SEd
= x, -

For example, if SEd were equivalent to 2.Os and n were
1, then k would be ± 1.Os. If SEd were 1.Os and n were
4, then k would be x0 ± 0.25s.

The value for h is obtained from a nomogram, such
as the ones provided by Davies and Goldsmith (5) and
Duncan (6). These nomograms give h as a function of
SEd, n, and the performance characteristics of the
control scheme. We call these characteristics (a) the
probability for false rejection, p, and (b) the proba-
bility for error detection, Ped (4). In the statistical lit-
erature, the terminology for these characteristics is (a)
the probability for an a or type I error, and (b) 1 minus
the probability for a or type II error, also known as the
“power of the test.” In the quality-control literature,
these characteristics are called (a) the probability for
rejection when quality is acceptable, Pa, and (b) the
probability for rejection when quality is rejectable, Pr.

It is also common in the quality-control literature to
express these characteristics in terms of the average
number of control observations that will be accumulated
before the analytical run is rejected. This is called the
average run length (ARL), and it can be specified for
both situations. ARLfr is given by 1/Pfr and ARLed S

given by 1/Ped. The nomograms given in the references
(5, 6) present the performance characteristics in terms
of average run lengths.

In using these nomograms, values must be chosen for
SEd, n, and ARLtr, then the nomogram provides an es-
timate of ARLed and gives a factor h /i/s. The upper
and lower control limits (h and h,, respectively) can
then be calculated as follows.

h = (nomogram factor)(s/V’)

= -(nomogram factor)(s/V’i) (7)
To give a specific example of how a decision limit

cusum technique can be set up, the nomograrn provided
by Davies and Goldsmith (5) will be used. Note that this
nomogram is for a one-sided control scheme, whereas
the interest in clinical chemistry applications is for a
two-sided scheme because process deviations both
above and below the mean are important. The ARLfr for

a two-sided scheme will be one-half that given in the
nomogram; thus when Pfr = 0.002 is desired, an ARLf
of 1000 should be used instead of 500. The ARL5j or pj
given by the nomogram will still be approximately

(4) correct for a two-sided scheme.
This particular nomogram has (ISEd I‘.,/i)/s plotted

on the y-axis and (IhIv’i)/s plotted on the x-axis,
though the terminology is different from that used here.

(5) Given SEd as 2.Os and n as 1, they coordinate is 2.0. For

Pfr = 0.002, the ARLfr line for 1000 is used (instead of
the line for 500, see discussion above). The intersection
of this line and the y-coOrdinate of 2.0 gives an x co#{246}r-
dinate of 2.7, which means that h is 2.7s. For this point
of intersection, the nomogram also indicates that ARLe(j
should be 3 to 4; i.e., on the average, it will take three to
four control observations to detect a systematic change
equivalent to 2s.

For this example, the decision limit cusum technique
would operate as follows.

(1) Obtain estimates of a and s from previous con-
trol data.

(2) Calculate the k-values (k = + 1.Os, k1 = xa -

1.Os) and the control limits (h = 2.7s, h1 = -2.7s).
(3) When a control observation is between the k-

values (i.e., within a ± 1.Os), do nothing.
(4) When a control observation exceeds k or is less

than k,, initiate the cusum calculation. Calculate d1 =

- k = CS3.
(5) For each additional point, continue calculating

d and CS1.
(6a) When CS changes sign, stop calculating until

such time as step 4 above again applies.
(6b) When CS1 exceeds one of the control limits,

declare the run out-of-control.
To illustrate how this technique works, an example

set of data is given in Table 1 and discussed in the
Methods and Materials section of this paper.
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