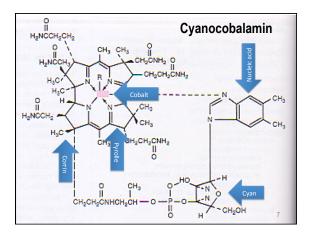
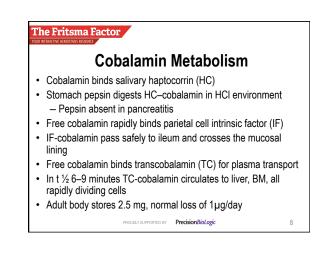
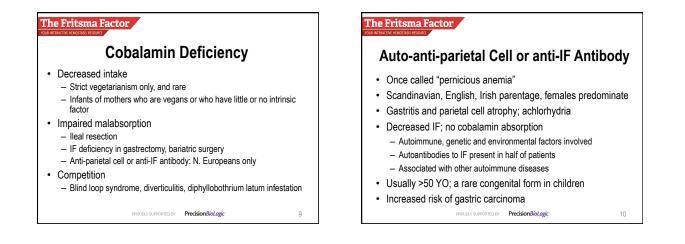


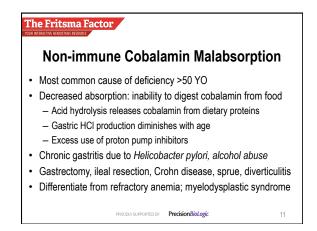
Folate Deficiency

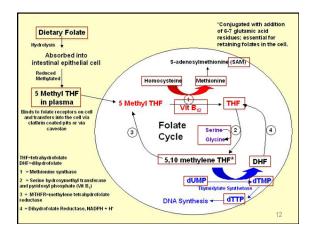
- · Decreased folic acid intake
 - Poor nutrition: alcoholism, poverty, premature infants
 - Impaired absorption: inflammatory bowel disease, tropical/nontropical sprue, diverticulitis
 - Impaired folate utilization due to drugs; chemotherapy
- · Increased folate requirements
 - Host competition: blind loop syndrome
 - Pregnancy, lactation
 - Chronic hemolytic anemia or chronic blood loss
 - Solid tumors, lymphoma, myeloproliferative neoplasms
 - Chronic renal dialysis

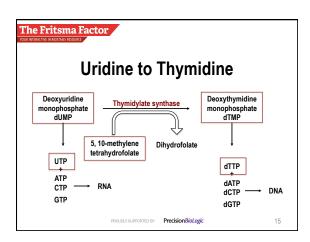

PROUDLY SUPPORTED BY PrecisionBioLogic

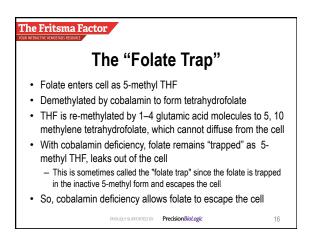

The Fritsma Factor


Dietary Cobalamin (Vitamin B₁₂)


- Source: synthesized by bacteria
- Humans ingest from animal products, milk, cheese, eggs, cyanocobalamin supplements, not in fruits or vegetables
- MDR in adults is 5–7 $\mu\text{g/d},$ 70% absorbed
- Normal stores last 1000 days
- Structure
 - "Corrin" ring: four pyrolle groups surround cobalt
 - Connected by a nucleotide
 - $-\beta$ -group: cyano, hydroxyl (inactive); methyl, adenosyl (active)


PROUDLY SUPPORTED BY PrecisionBioLogic



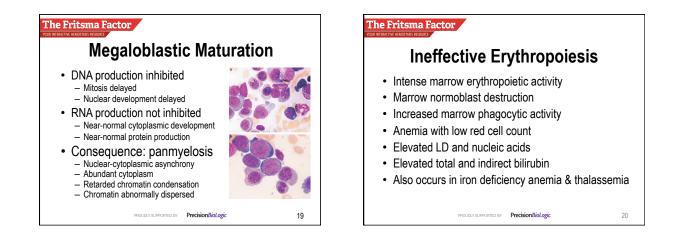


14

The Fritsma Factor The Fritsma Factor Folate and Cobalamin: Two Important Steps Folate Cycle: Enzymatic Steps · Cobalamin demethylates 5-methylene THF 1. 5-methyl THF is demethylated to form THF by - Coupled to homocysteine-methionine cobalamin catalyzed by methionine synthase - Methionine converts to S-adenosyl methionine (SAM) 2. THF is methylated from serine by serine needed for normal neurologic function hydroxymethyl transferase, requiring pyridoxyl 5,10 methylene tetrahydrofolate and thymidylate phosphate (vitamin B₆) 3. 5, 10 methylene THF demethylated to 5 methyl THF synthetase by methylene tetrahydrofolate reductase (MTHFR) - Convert deoxyuridine monophosphate (dUMP) to deoxythymidine monophosphate (dTMP) 4. DHF becomes condensed to THF by dihydrofolate - dTMP converted to dTTP used in DNA synthesis reductase in the presence of coenzyme NADPH+ H+ PROUDLY SUPPORTED BY PrecisionBioLogic PROUDLY SUPPORTED BY PrecisionBioLogic 13

The Fritsma Factor

Effect of Folate or Cobalamin Deficiency


- Uridine nucleotide production is normal - Normal RNA production
- Thymidine nucleotide production is impaired
 - Inadequate carbon transfer, poor dUMP methylation
 - Deoxyuridine misincorporated in DNA causing double-stranded breaks
 - Interphase and S-phase arrested at several points PROUDLY SUPPORTED BY PrecisionBioLogic

The Fritsma Factor 🖌

Biochemical Defect Consequences

- 1. Uridine replaces thymidine in DNA
- 2. DNA uracil glycosylase excises dUTP
- 3. DNA strand breakage, nuclear fragmentation
- 4. Ineffective hematopoiesis, increased production
- 5. Delay in cell cycle increases cell size
- 6. RBC survival 25-35 days, rapid turnover
- 7. Affects survival of all rapidly dividing cells; myeloblastic, megakaryocytic, normoblastic, and intestinal epithelium

PROUDLY SUPPORTED BY PrecisionBioLogic

Blood Findings in Megaloblastic Anemia

- HGB <12.0 g/dL and HCT <36 %
- MCV 100–150 fL, RDW >15.5, MCHC 32–36%
 MCV rises long before HGB and HCT fall
- Oval macrocytes, Howell-Jolly bodies, basophilic stippling, Cabot rings, dacryocytes, schistocytes
- Absolute reticulocyte count (ARC) <84 × 10⁹/L
- Neutropenia with ≥5% hypersegmented PMNs presenting with 5 segments (macropolycytes)
 - Only one macropolycyte with 6 segments supports the diagnosis
 Hydroxyurea therapy and steroids also cause this
- Thrombocytopenia with functional platelet impairment
 ProcisionBiologic

22

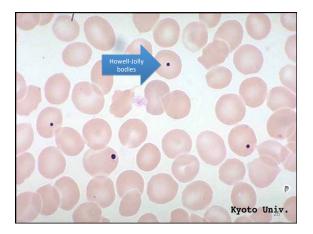
The Fritsma Factor

Megaloblastic Anemia with Additional Pathology

- Ineffective erythropoiesis may lead to iron deficiency – MCV may return to normal
- Megaloblastic anemia plus blood loss, anemia of chronic inflammation, kidney disease, thalassemia

 MCV not elevated
- Macropolycytes are key when MCV is ambiguous

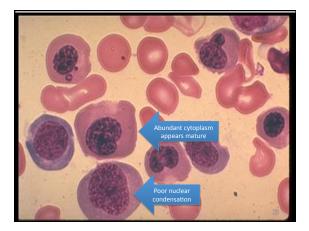
PROUDLY SUPPORTED BY PrecisionBioLogic

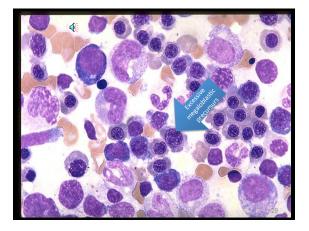

· Or go to bone marrow aspirate smear

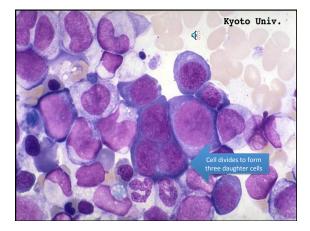
Marked anisocytosis MBC with incomplete Ruclear maturation Wacroovalocyte

3/30/2017

Megaloblastic Anemia


The Fritsma Factor


Megaloblastic Maturation: Bone Marrow


- Bone marrow hypercellular
- M:E ratio 1:1 due to increased erythropoiesis

PROUDLY SUPPORTED BY PrecisionBioLogic

- Nuclear-cytoplasm asynchrony
- Giant metamyelocytes and BANDs
- Diffuse nuclear condensation; "cut salami" appearance

Other Macrocytosis Causes

- Hemolytic anemias or chronic blood loss, elevated reticulocyte count = polychromatophilia, MCV 100–110 fL
- Liver disease and alcoholism membrane lipid imbalance
- Myelodysplastic syndrome: refractory anemia
 Oval macrocytosis with H-J bodies and Cabot rings
 Hypogranular pelgeroid PMNs
- Thrombocytopenia with giant platelets
 Antiviral, immunosuppressive
- and cytotoxic drugs

Lab Assays Assist in Differential Diagnosis

Assay	Purpose	RI
Serum cobalamin	Cobalamin deficiency	<200 ng/L
Serum folate	Folate deficiency	<2.5 ug/L
RBC folate (whole blood)	Follow-up serum folate deficiency	<160 ug/L
Serum homocysteine	Early folate deficiency	>18 nM/mL
Methylmalonic acid	Early cobalamin deficiency	>280 nM/L
Schilling test (obsolete)	⁵⁷ Co-labeled oral cyanocobalamin. If low excretion, follow-up with second stage using cyanocobalamin and IF	>8% excretion In 24 h urine

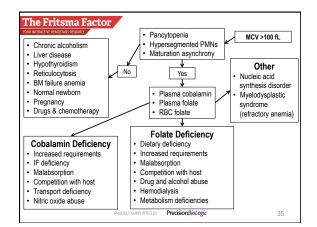
The Fritsma Factor

Lab Assays Assist in Differential Diagnosis

PROUDLY SUPPORTED BY PrecisionBioLogi

- Chemiluminescent immunoassay of folate and cobalamin
- Serum folate: reflects folic acid ingestion over past few days
 Hemolysis causes false elevation
- RBC folate: folate incorporated during erythropoiesis
 Reflects folic acid ingestion over months
 - Reticulocytosis causes false elevation
- Cobalamin deficiency "folate trap;" folate escapes RBCs
 Falsely raises serum folate
 - Falsely reduces RBC folate

PROUDLY SUPPORTED BY PrecisionBioLogic

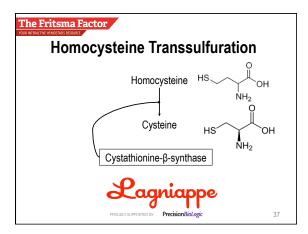

The Fritsma Factor

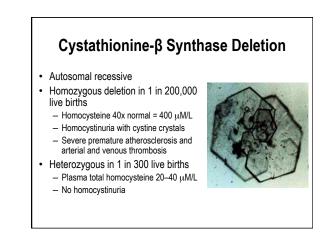
Anti-IF; Anti-Parietal Cell Antibodies

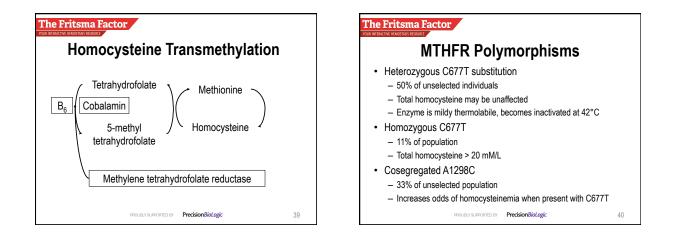
- · Auto-anti-IF in 56% of cobalamin deficiency cases
- Auto-anti-gastric parietal cells in 85–90% of cases
 Detected in other conditions including normals
- · Gastric acid titration (obsolete)
- · Schilling test results (obsolete)
 - Decreased absorption of oral radioactive cyanocobalamin
 - Corrected by ingestion of IF administered with a second dose of oral cyanocobalamin
 - Similar results seen after gastrectomy
 Producty Supported by
 PrecisionBioLogic

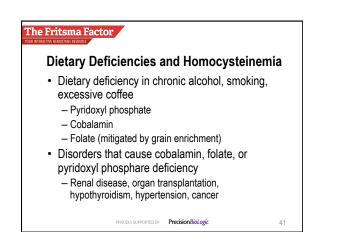
34

36




The Fritsma Factor


Megaloblastic Anemia Therapy

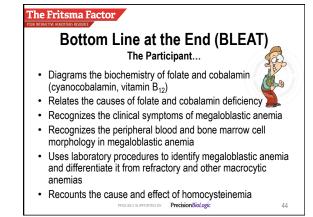

- Therapeutic trial: oral folic acid or subcutaneous cyanocobalamin
 Watch for response
 - Reticulocytes rise in 2–3 days, peak at 7 days
 - Hypersegmented PMNs disappear in 12-14 days
 - HCT begins to rise in 5-7 days and is normal in 4-8 weeks
 - MMA (cobalamin deficiency only) and homocysteine (cobalamin or folate deficiency) decline within a few days
- Folic acid may partially correct the anemia of a cobalamin deficiency, but will not correct the neuropathies, nerve damage and neuropsychiatric complications; must identify a cobalamin deficiency before permanent neurologic damage occurs

PROUDLY SUPPORTED BY PrecisionBioLogic

Homocysteinemia and Odds of Venous Thromboembolism

PROUDLY SUPPORTED BY PrecisionBioLogic

- Homocysteine >18 nM/mL
 - -Men <50: 2.5×
 - -Women <50: 7.0×
 - –>50 YO: 5.5×


Reducing Homocysteinemia

 Folic acid: 0.65 mg/d min

 Supplement with cyanocobalamin to avoid masking cobalamin deficiency with neuropathy

PROUDLY SUPPORTED BY PrecisionBioLogic

- Pyridoxyl phosphate: 250 mg/d minimum
- Cyanocobalamin: 0.2-0.4 mg/d minimum

