

Megaloblastic Anemia Folate and Cobalamin Deficiency

George A. Fritsma, MS MLS

www.fritsmafactor.com george@fritsmafactor.com

PROUDLY SUPPORTED BY

Precision *BioLogic*

Bottom Line at Start (BLAST) The Participant...

- Diagrams the biochemistry of folate and cobalamin (cyanocobalamin, vitamin B₁₂)
- Relates the causes of folate and cobalamin deficiency
- Recognizes the clinical symptoms of megaloblastic anemia
- Recognizes the peripheral blood and bone marrow cell morphology in megaloblastic anemia
- Uses lab procedures to identify megaloblastic anemia and differentiate it from refractory and other macrocytic anemias
- Recounts the cause and effect of homocysteinemia

Folate Sources and Folic Acid

- Folate from leafy vegetables (foliage), fruits, organ meats, nuts, beans, orange juice, dairy products, grains, cereals
- Boiling reduces folate concentration
- Fortification with 140 µg folic acid/100g cereal grain in 1998
- Absorbed in jejunum, converted to 5-methyl tetrahydrofolate (THF)
- Minimum daily adult requirement
 - 400 µg synthetic folate equivalent (folic acid)
 - 600 μg folic acid during pregnancy, 500 μg during lactation
- Cleared to tissues, primarily liver
 - Absence of dietary folate leads to anemia in 3-6 months

Folate is Pteroylmonoglutamate

Folate Deficiency

- Decreased folic acid intake
 - Poor nutrition: alcoholism, poverty, premature infants
 - Impaired absorption: inflammatory bowel disease, tropical/nontropical sprue, diverticulitis
 - Impaired folate utilization due to drugs; chemotherapy
- Increased folate requirements
 - Host competition: blind loop syndrome
 - Pregnancy, lactation
 - Chronic hemolytic anemia or chronic blood loss
 - Solid tumors, lymphoma, myeloproliferative neoplasms
 - Chronic renal dialysis

Dietary Cobalamin (Vitamin B₁₂)

- Source: synthesized by bacteria
- Humans ingest from animal products, milk, cheese, eggs, cyanocobalamin supplements, not in fruits or vegetables
- MDR in adults is 5–7 μ g/d, 70% absorbed
- Normal stores last 1000 days
- Structure
 - "Corrin" ring: four pyrolle groups surround cobalt
 - Connected by a nucleotide
 - $-\beta$ -group: cyano, hydroxyl (inactive); methyl, adenosyl (active)

Cobalamin Metabolism

- Cobalamin binds salivary haptocorrin (HC)
- Stomach pepsin digests HC–cobalamin in HCI environment
 Pepsin absent in pancreatitis
- Free cobalamin rapidly binds parietal cell intrinsic factor (IF)
- IF-cobalamin pass safely to ileum and crosses the mucosal lining
- Free cobalamin binds transcobalamin (TC) for plasma transport
- In t ½ 6–9 minutes TC-cobalamin circulates to liver, BM, all rapidly dividing cells
- Adult body stores 2.5 mg, normal loss of 1µg/day

Cobalamin Deficiency

- Decreased intake
 - Strict vegetarianism only, and rare
 - Infants of mothers who are vegans or who have little or no intrinsic factor
- Impaired malabsorption
 - Ileal resection
 - IF deficiency in gastrectomy, bariatric surgery
 - Anti-parietal cell or anti-IF antibody: N. Europeans only
- Competition
 - Blind loop syndrome, diverticulitis, diphyllobothrium latum infestation

Auto-anti-parietal Cell or anti-IF Antibody

- Once called "pernicious anemia"
- Scandinavian, English, Irish parentage, females predominate
- Gastritis and parietal cell atrophy; achlorhydria
- Decreased IF; no cobalamin absorption
 - Autoimmune, genetic and environmental factors involved
 - Autoantibodies to IF present in half of patients
 - Associated with other autoimmune diseases
- Usually >50 YO; a rare congenital form in children
- Increased risk of gastric carcinoma

Non-immune Cobalamin Malabsorption

- Most common cause of deficiency >50 YO
- Decreased absorption: inability to digest cobalamin from food
 - Acid hydrolysis releases cobalamin from dietary proteins
 - Gastric HCI production diminishes with age
 - Excess use of proton pump inhibitors
- Chronic gastritis due to Helicobacter pylori, alcohol abuse
- Gastrectomy, ileal resection, Crohn disease, sprue, diverticulitis
- Differentiate from refractory anemia; myelodysplastic syndrome

Folate Cycle: Enzymatic Steps

- 1. 5-methyl THF is demethylated to form THF by cobalamin catalyzed by methionine synthase
- THF is methylated from serine by serine hydroxymethyl transferase, requiring pyridoxyl phosphate (vitamin B₆)
- 3. 5, 10 methylene THF demethylated to 5 methyl THF by methylene tetrahydrofolate reductase (MTHFR)
- 4. DHF becomes condensed to THF by dihydrofolate reductase in the presence of coenzyme NADPH⁺ H⁺

Folate and Cobalamin: Two Important Steps

- Cobalamin demethylates 5-methylene THF
 - Coupled to homocysteine-methionine
 - Methionine converts to S-adenosyl methionine (SAM) needed for normal neurologic function
- 5,10 methylene tetrahydrofolate and thymidylate synthetase
 - Convert deoxyuridine monophosphate (dUMP) to deoxythymidine monophosphate (dTMP)
 - dTMP converted to dTTP used in DNA synthesis

Uridine to Thymidine

The "Folate Trap"

- Folate enters cell as 5-methyl THF
- Demethylated by cobalamin to form tetrahydrofolate
- THF is re-methylated by 1–4 glutamic acid molecules to 5, 10 methylene tetrahydrofolate, which cannot diffuse from the cell
- With cobalamin deficiency, folate remains "trapped" as 5methyl THF, leaks out of the cell
 - This is sometimes called the "folate trap" since the folate is trapped in the inactive 5-methyl form and escapes the cell
- So, cobalamin deficiency allows folate to escape the cell

Effect of Folate or Cobalamin Deficiency

- Uridine nucleotide production is normal
 - -Normal RNA production
- Thymidine nucleotide production is impaired
 - Inadequate carbon transfer, poor dUMP methylation
 - Deoxyuridine misincorporated in DNA causing double-stranded breaks
 - Interphase and S-phase arrested at several points

Biochemical Defect Consequences

- 1. Uridine replaces thymidine in DNA
- 2. DNA uracil glycosylase excises dUTP
- 3. DNA strand breakage, nuclear fragmentation
- 4. Ineffective hematopoiesis, increased production
- 5. Delay in cell cycle increases cell size
- 6. RBC survival 25–35 days, rapid turnover
- 7. Affects survival of all rapidly dividing cells; myeloblastic, megakaryocytic, normoblastic, and intestinal epithelium

Megaloblastic Maturation

- DNA production inhibited
 - Mitosis delayed
 - Nuclear development delayed
- RNA production not inhibited
 - Near-normal cytoplasmic development
 - Near-normal protein production
- Consequence: panmyelosis
 - Nuclear-cytoplasmic asynchrony
 - Abundant cytoplasm
 - Retarded chromatin condensation
 - Chromatin abnormally dispersed

Ineffective Erythropoiesis

- Intense marrow erythropoietic activity
- Marrow normoblast destruction
- Increased marrow phagocytic activity
- Anemia with low red cell count
- Elevated LD and nucleic acids
- Elevated total and indirect bilirubin
- Also occurs in iron deficiency anemia & thalassemia

The Fritsma Factor

Clinical Effects of Cobalamin and Folate Deficiency

- Anemia: fatigue, weakness, shortness of breath, jaundice
- Glossitis: loss of tongue epithelium
- Stomatitis: loss of mouth epithelium

- Mostly in cobalamin deficiency, causes nausea, constipation
- Demyelinization of spinal cord: cobalamin deficiency alone
 - Memory loss, numbness, tingling, loss of balance, irritability, depression, cognitive deficits, convulsions, psychosis
- Hyperhomocysteinemia: folate or cobalamin deficiency
 - Also pyridoxyl phosphate deficiency
 - Venous thrombosis, cardiovascular disease
 - Neural tube closure defect: spina bifida PROUDLY SUPPORTED BY Precision BioLogic

Blood Findings in Megaloblastic Anemia

- HGB <12.0 g/dL and HCT <36 %
- MCV 100–150 fL, RDW >15.5, MCHC 32–36%
 - MCV rises long before HGB and HCT fall
- Oval macrocytes, Howell-Jolly bodies, basophilic stippling, Cabot rings, dacryocytes, schistocytes
- Absolute reticulocyte count (ARC) $<84 \times 10^{9}/L$
- Neutropenia with ≥5% hypersegmented PMNs presenting with 5 segments (macropolycytes)
 - Only one macropolycyte with 6 segments supports the diagnosis
 - Hydroxyurea therapy and steroids also cause this
- Thrombocytopenia with functional platelet impairment

Megaloblastic Anemia with Additional Pathology

- Ineffective erythropoiesis may lead to iron deficiency

 MCV may return to normal
- Megaloblastic anemia plus blood loss, anemia of chronic inflammation, kidney disease, thalassemia
 MCV not elevated
- Macropolycytes are key when MCV is ambiguous
- Or go to bone marrow aspirate smear

Marked anisocytosis

NRBC with incomplete nuclear maturation

Macroovalocyte

Megaloblastic Maturation: Bone Marrow

- Bone marrow hypercellular
- M:E ratio 1:1 due to increased erythropoiesis
- Nuclear-cytoplasm asynchrony
- Giant metamyelocytes and BANDs
- Diffuse nuclear condensation; "cut salami" appearance

Abundant cytoplasm appears mature

28

Poor nuclear condensation

Other Macrocytosis Causes

- Hemolytic anemias or chronic blood loss, elevated reticulocyte count = polychromatophilia, MCV 100–110 fL
- Liver disease and alcoholism membrane lipid imbalance
- Myelodysplastic syndrome: refractory anemia
 - Oval macrocytosis with H-J bodies and Cabot rings
 - Hypogranular pelgeroid PMNs
 - Thrombocytopenia with giant platelets
- Antiviral, immunosuppressive and cytotoxic drugs

Lab Assays Assist in Differential Diagnosis

Assay	Purpose	RI
Serum cobalamin	Cobalamin deficiency	<200 ng/L
Serum folate	Folate deficiency	<2.5 ug/L
RBC folate (whole blood)	Follow-up serum folate deficiency	<160 ug/L
Serum homocysteine	Early folate deficiency	>18 nM/mL
Methylmalonic acid	Early cobalamin deficiency	>280 nM/L
Schilling test (obsolete)	⁵⁷ Co-labeled oral cyanocobalamin. If low excretion, follow-up with second stage using cyanocobalamin and IF	>8% excretion In 24 h urine

Lab Assays Assist in Differential Diagnosis

- Chemiluminescent immunoassay of folate and cobalamin
- Serum folate: reflects folic acid ingestion over past few days
 Hemolysis causes false elevation
- RBC folate: folate incorporated during erythropoiesis
 - Reflects folic acid ingestion over months
 - Reticulocytosis causes false elevation
- Cobalamin deficiency "folate trap;" folate escapes RBCs
 - Falsely raises serum folate
 - Falsely reduces RBC folate

Anti-IF; Anti-Parietal Cell Antibodies

- Auto-anti-IF in 56% of cobalamin deficiency cases
- Auto-anti-gastric parietal cells in 85–90% of cases
 Detected in other conditions including normals
- Gastric acid titration (obsolete)
- Schilling test results (obsolete)
 - Decreased absorption of oral radioactive cyanocobalamin
 - Corrected by ingestion of IF administered with a second dose of oral cyanocobalamin
 - Similar results seen after gastrectomy

Megaloblastic Anemia Therapy

- Therapeutic trial: oral folic acid or subcutaneous cyanocobalamin
- Watch for response
 - Reticulocytes rise in 2-3 days, peak at 7 days
 - Hypersegmented PMNs disappear in 12–14 days
 - HCT begins to rise in 5–7 days and is normal in 4–8 weeks
 - MMA (cobalamin deficiency only) and homocysteine (cobalamin or folate deficiency) decline within a few days
- Folic acid may partially correct the anemia of a cobalamin deficiency, but will not correct the neuropathies, nerve damage and neuropsychiatric complications; must identify a cobalamin deficiency before permanent neurologic damage occurs

The Fritsma Factor YOUR INTERACTIVE HEMOSTASIS RESOURCE

Homocysteine Transsulfuration

Cystathionine-β Synthase Deletion

- Autosomal recessive
- Homozygous deletion in 1 in 200,000 live births
 - Homocysteine 40x normal = 400 μ M/L
 - Homocystinuria with cystine crystals
 - Severe premature atherosclerosis and arterial and venous thrombosis
- Heterozygous in 1 in 300 live births
 - Plasma total homocysteine 20–40 $\mu\text{M/L}$
 - No homocystinuria

Homocysteine Transmethylation

MTHFR Polymorphisms

- Heterozygous C677T substitution
 - 50% of unselected individuals
 - Total homocysteine may be unaffected
 - Enzyme is mildy thermolabile, becomes inactivated at 42°C
- Homozygous C677T
 - 11% of population
 - Total homocysteine > 20 mM/L
- Cosegregated A1298C
 - 33% of unselected population
 - Increases odds of homocysteinemia when present with C677T

Dietary Deficiencies and Homocysteinemia

- Dietary deficiency in chronic alcohol, smoking, excessive coffee
 - Pyridoxyl phosphate
 - Cobalamin
 - Folate (mitigated by grain enrichment)
- Disorders that cause cobalamin, folate, or pyridoxyl phosphare deficiency
 - Renal disease, organ transplantation, hypothyroidism, hypertension, cancer

Homocysteinemia and Odds of Venous Thromboembolism

Homocysteine >18 nM/mL
 Men <50: 2.5×
 Women <50: 7.0×
 >50 YO: 5.5×

Reducing Homocysteinemia

- Folic acid: 0.65 mg/d min
 - Supplement with cyanocobalamin to avoid masking cobalamin deficiency with neuropathy
- Pyridoxyl phosphate: 250 mg/d minimum
- Cyanocobalamin: 0.2–0.4 mg/d minimum

Bottom Line at the End (BLEAT) The Participant...

- Diagrams the biochemistry of folate and cobalamin (cyanocobalamin, vitamin B₁₂)
- Relates the causes of folate and cobalamin deficiency
- Recognizes the clinical symptoms of megaloblastic anemia
- Recognizes the peripheral blood and bone marrow cell morphology in megaloblastic anemia
- Uses laboratory procedures to identify megaloblastic anemia and differentiate it from refractory and other macrocytic anemias
- Recounts the cause and effect of homocysteinemia

PROUDLY SUPPORTED BY Precis