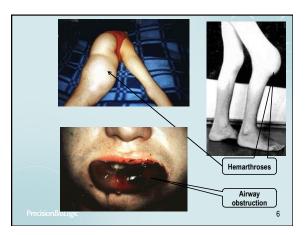
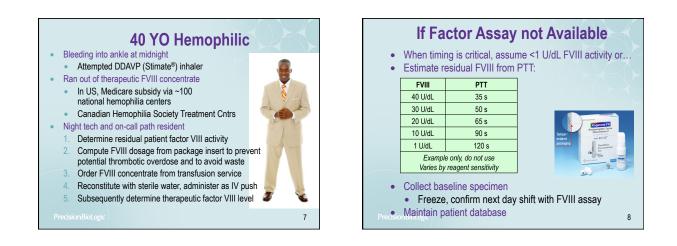
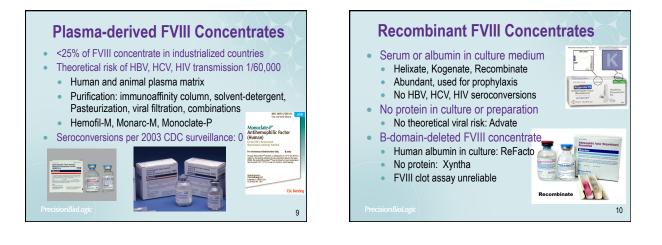
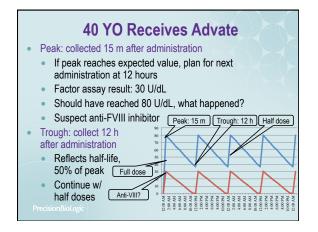
PrecisionBioLogic Coagulation Factor Inhibitors and the Nijmegen Bethesda Assay George A Fritsma MS, MLS The Fritsma Factor, Your interactive Hemostasis Resource⁵⁴⁴ Sponsored by Precision BioLogic Dartmouth, Nova Soctia george@fritsmafactor.com www.fritsmafactor.com

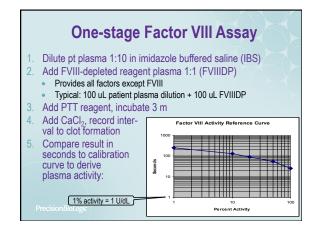
Coagulation Factor Inhibitors

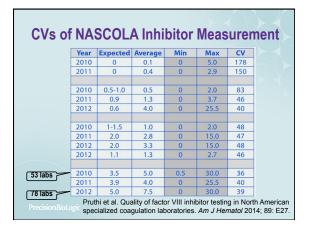

Bottom Line at the Start (BLATS); The Participant...

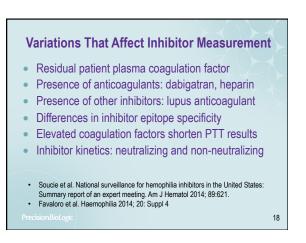

- Explains the origin of anti-factor VIII (FVIII inhibitor)
- Detects FVIII inhibitors using factor assays and mixing studies
- Measures FVIII inhibitors using the Bethesda titer, Nijmegen Bethesda assay, chromogenic Bethesda assay, enzyme immunoassay and fluorescence immunoassay
- Describes coagulation factor bypass therapy to resolve bleeding in inhibitor patients
- Describes immune tolerance induction therapy
- Lists new factor concentrates designed to prevent inhibitor formation

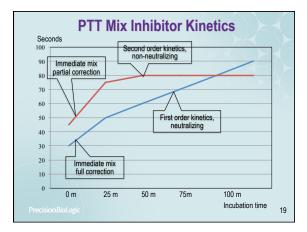

Z -yC	Hemoph	IIIC DOy
Test	Result	RI
HGB	11.8 g/dL	9.6–15.6 g/dL
PT	11.2 s	9.8–12.6 s
PTT	65 s	25–35 s
PLT	310,000/μL	150–400,000/µL
Fibrinogen	390 mg/dL	220-498 mg/dL
Inflamed, swo	ollen knee and ankl	e

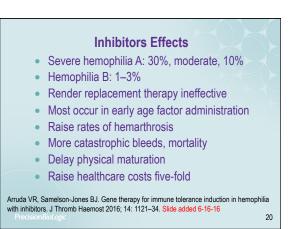

Mixing S	NP: plas	commercial pooled ma from 20 normal h ~100 U/dL factor	normal donors levels
Assay	Result	RI	Comment
Patient PTT	63 s	25–35 s	
Immediate PTT of patient/NP 1:1 mix	34.5 s	NP PTT 30 s	Limit: NP + 10%: Incomplete correction
PTT of Pt/NP 1:1 mix incubated 1 h at 37°C	47.9 s	NP PTT 35 s	Incubate mix and NP: Uncorrected
 R/O lupus antico Specific coagula	• •		c, bleeding hibitor; Bethesda titer
Precision <i>BioLogic</i>			4

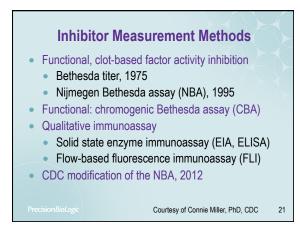

	Hemo	ohilia A	Sympto	oms
	Spontaneou			
• Ble	eding at umbi	ilical stump a	nd circumci	sion
• De	layed bleeding	g triggered by	y injury	
•	Joints, large	muscles, bod	ly cavities, (GI, soft
	tissue, tongu	e, kidney, tes	ticles, brain	, CNS
• Sp	ontaneous ble	eds, especia	ally into joint	S
 Inf 	lammation, he	matomas, he	emarthroses	
	Severe	Moderate	Mild	
Prevalence	70%	15%	15%	
FVIII U/dL	<1	1–5	6–30	
Bleeding	Spontaneous	Minor trauma	Major trauma	

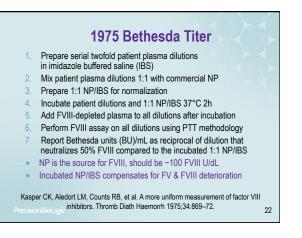


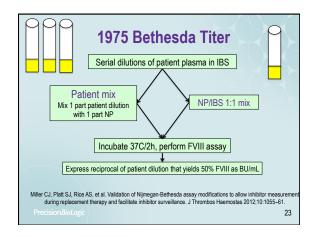


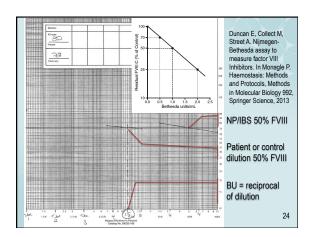

			lo Inhibitor
Automated Plasma Dilution	Seconds	Raw Factor VIII Activity	Computed Factor VIII Activity (× dilution)
1:10 "undiluted"	90 s	20 U/dL	20 U/dL
1:20	105 s	10 U/dL	20 U/dL (parallel)*
1:40	107 s	5.5 U/dL	22 U/dL (parallel)
1:80	110 s	2.6 U/dL	20.8 U/dL (parallel)
* <10% difference	e from un	diluted indicates	parallelism, no inhibitor

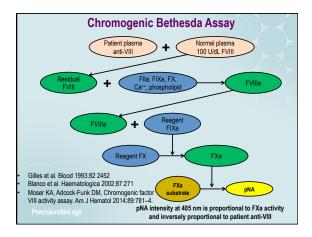

Plasma Dilution	Seconds	Raw Factor VIII Activity	Computed Factor VII Activity (x dilution)*
1:10 (undiluted)	95 s	10 U/dL	10 U/dL
1:20	99 s	8 U/dL	16 U/dL
1:40	107 s	5 U/dL	20 U/dL
1:80	108 s	4 U/dL	32 U/dL
 >10% difference 	e from undilu	ted = non-parallel	& rising, implies inhibitor

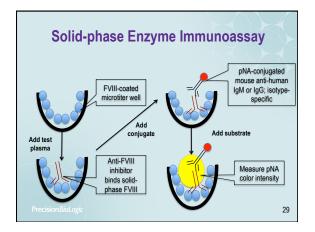


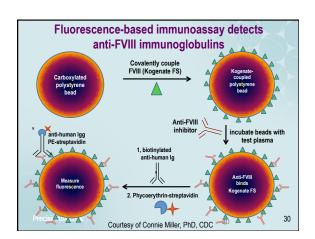




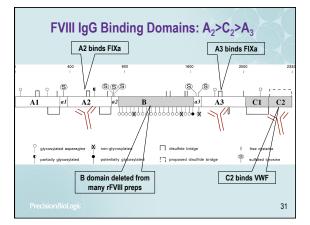


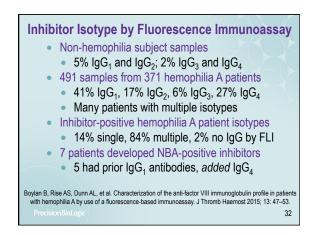


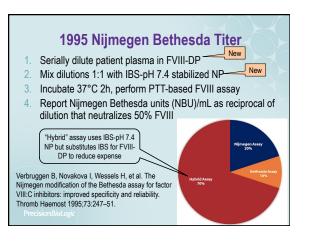

Chromogenic Bethesda Assay


- 1. Prepare pt plasma and control dilutions as for Bethesda titer
- 2. Mix pt plasma and control dilutions 1:1 with NP, incubate 2 h.
- 3. Dilute incubated pt/control plasma/NP 1:31 in IBS.
- 4. Add reagent: bovine FX, FIXa, thrombin, CaCl₂, & PL.
- 5. Incubate 90s at 37°C, generates FXa
- 6. Add FXa chromogenic substrate with thrombin inhibitor and stopping buffer to measure FXa surrogate to FVIII activity
- 7. Measure FXa: read $\Delta A/m$ at 405 nm.
- 8. 1 chromogenic Bethesda unit (CBU) = level of inhibitor/mL of patient plasma that inactivates 50% of FVIII in 1 mL NP.
 - Limit: ≥0.5 CBU = positive

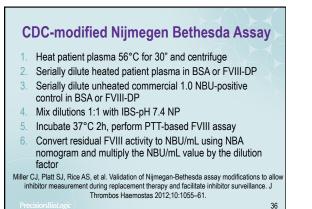
25

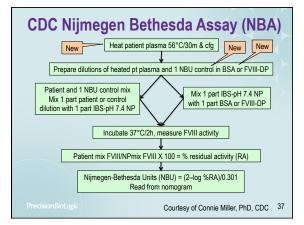


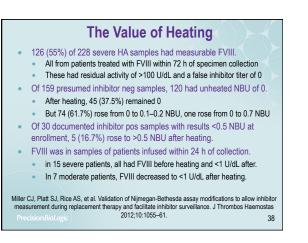

Bethesda Titer Vs Chromogenic Bethesda Assay Immunoassay Measurement Bethesda Titer Chromogenic Bethesda EIA: FVIII antigenic target immobilized in well Quantitative endpoint Variable non-specific endpoint: clot detection detection system FLI: FVIII target immobilized on fluorescent beads Sensitive to inhibitors at Insensitive to inhibitors More sensitive than functional assays ≤ 0.5 BU/mL 0.1 BU/mL Detect neutralizing & non-neutralizing inhibitors Specific for factor Interference from lupus Detect non factor-inhibiting immunoglobulins anticoagulant inhibitors No LAC interference, therapeutic A/Cs interfere: Non-specific, require functional assay follow-up distinguish LAC from heparin and dabigatran Confirm FVIII reactivity in clot-based assays and inhibitor distinguish isotypes IgG₁, IgG₂, IgG₄ Miller CH, Rice AS, Boylan B, et al. Comparison of clot-based, chromogenic, and fluorescence assays for measurement of factor VIII inhibitors in the US Hemophilia Inhibitor Lavigne-Lissalde et al. Thromb Haemost 2008;99: 1090 Krudysz-Amblo et al. Blood 2009;113:2587 Research Study. J Thromb Haemost 2013; 11: 1300-9. 27

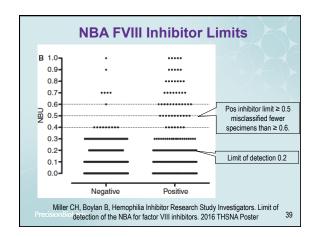


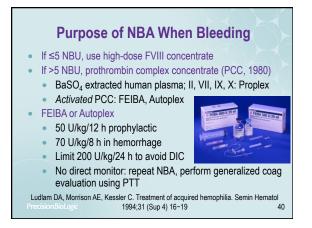
28

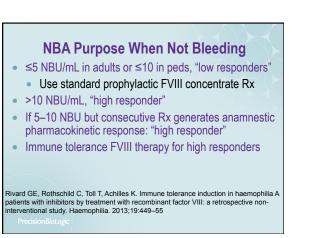







CDC Standard NBA Protocol Updates


- Ship patient specimens on cold packs, not frozen
- Use IBS-pH 7.4 reagent normal plasma (NP) to stabilize FVIII
- Heat specimens 56°C 30" & centrifuge to remove FVIII
- Residual FVIII from recent prophylaxis or on-demand Rx
- Non-neutralizing antibody leaves behind residual VIII
- Heat improves specificity for low-titer inhibitors
- Factor IX titer, 58°C for 90"?
- Dilute heated pt plasmas and unheated 1 BU positive control in bovine serum albumin (BSA) or FVIII-DP, not IBS
- Confirm all <2 BU/mL samples with alternate assay
- Miller CH, Adcock DM. The need for standardization of factor inhibitor assays. 2016 THSNA Poster Verbruggen B, Novakova I, van Heerde W. Detecting and quantifying functional inhibitors in haemostasis: In: Kitchen S, Olson JD, Preston FE (eds) Quality in laboratory haemostasis and thermehonic 2000 Redwilder thrombosis, 2009. Blackwell, Oxford

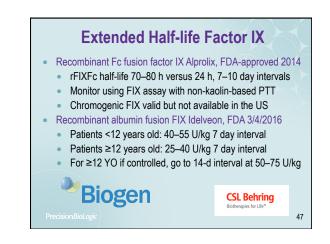


Immune Tolerance Induction (ITI) Rx

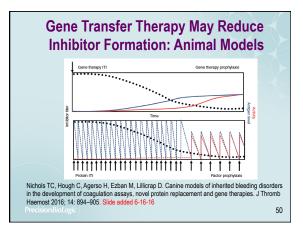
- Success rate 60%. Patient is good candidate when...
 - Historical peak < 200 NBU, < 10 BU at ITI initiation
 - < 2 years from inhibitor identification to ITI initiation
 - Age < 8 years; lower peak titer during ITI
- ITI: use 85–200 NBU FVIII/kg/day
 - Monitor using NBA; 0.6 NBU/mL = "negative"
 - 20% drop at 6 months Rx = satisfactory
 - Use maintenance dose throughout life
 - D/C if no response after 3 periods of 6 m

Arruda VR, Samelson-Jones BJ. Gene therapy for immune tolerance induction in hemophilia with inhibitors. . Thromb Haemost 2016: 14: 1121–34. Slide added 6-16-16

Extended Half-life Factor VIII: Eloctate

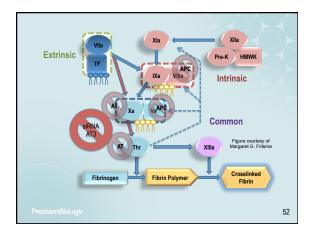

- Recombinant B-domain deleted Fc fusion factor VIII
- Extended by Fc receptor and IgG recycling pathway
- 96 HA adult males with >12 annual bleeds, 3–4 doses/week
 rFVIIIFc half-life 19 h vs rFVIII 12h; 1.6–3.6 annual bleeds
- Prophylactic Rx interval up to 5 days versus 3-4 doses/week
- Monitor using clot-based FVIII assay with non-kaolin-based PTT
- Improved monitoring using chromogenic FVIII assay for all Bdomain-deleted FVIII preparations

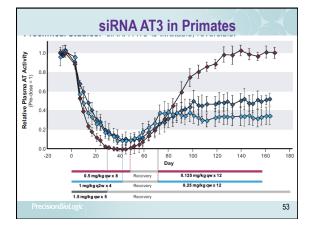
Shapiro AD, Ragni MV, Kulkarni R, et al. Recombinant factor VIII Fc fusion protein: extended-interval dosing maintains low bleeding rates and correlates with von Willebrand factor levels. J Thromb Haemost. 2014;12:1788–800 Mancuso ME, Mannucci PM. Fc-fusion technology and recombinant FUII and FIX in the management of the hemophillas. Drug Des Devel Ther. 2014 28;365–71. 45

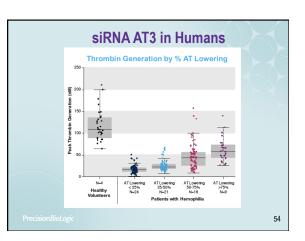

Additional rFVIII Preparations

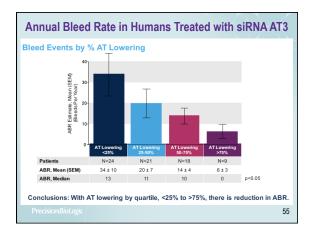
Name	MFR		Progress
Bax 111	Baxter	rVWF (not rFVIII)	At FDA
Kovaltry	Bayer	Full-length rFVIII with no human or	
NovoEight	Novo Nordisk	animal proteins, Reduced inhibitors,	Approved
NuWiq	Octapharma	normal to slightly extended half-life	
Bay 94-9027	Bayer	Pegylated, plasma/albumin free, full-length rFVIII, up to 7.5 d frequency	At FDA
Bax 855	Baxter "Baxalta"	Pegylated plasma/albumin free, full-length rFVIII, 1.5 X Advate half-life	At FDA
rFVIII single-chain	CSL Behring	rFVIII covalently bonds VWF reduces clearance, extends half-life; no inhibitors	Phase II
ACE 910	Chugai & Genentech	Bispecific protein mimics FVIII cofactor, activates IX & X, bypasses inhibitors, SC 1/wk, generates no immune response	FDA breakthrough status

	4/20/10.0	Sever	e Hem	ophilics
	Dose	Week	%	Outcome
	6X10 ¹² vg/kg	20	<1	Severe
	2X10 ¹³ vg/kg	16	2	Moderate
		16	57	Normal
	8	60	Normal	
	6X10 ¹³ vector genomes/kg	7	8	Mild
		7	4	Moderate
		6	21	Mild
		5	10	Mild




Target Antithrombin to Decrease Inhibition Silencing RNA (siRNA): synthetic RNA complementary to mRNA sequence, blocks mRNA translation siRNA-AT3 binds antithrombin mRNA and silences hepatic antithrombin production


• siRNA can be produced against any gene product: first accomplished in petunias


Napoli C et al, Plant Cell , 1990; Novina CD, Sharp PA, Nature 2004 Margaret Ragni, MD, MPH, University of Pittsburgh, THSNA, Chicago 4/14/16₅₁

Inhibitors

Coagulation Factor Inhibitors Bottom Line at the End (BLATE); The Participant...

- Explains the origin of anti-factor VIII (FVIII inhibitor)
- Detects FVIII inhibitors using factor assays and mixing studies
 Measures FVIII inhibitors using the Bethesda titer, Nijmegen
- Bethesda assay, chromogenic Bethesda assay, enzyme immunoassay and fluorescence immunoassay
- Describes coagulation factor bypass therapy to resolve bleeding in inhibitor patients
- Describes immune tolerance induction therapy
- Lists new factor concentrates designed to prevent inhibitor formation

