

THE FRITSMA FACTOR Your Interactive Hemostasis Resource

US Injury Incidence

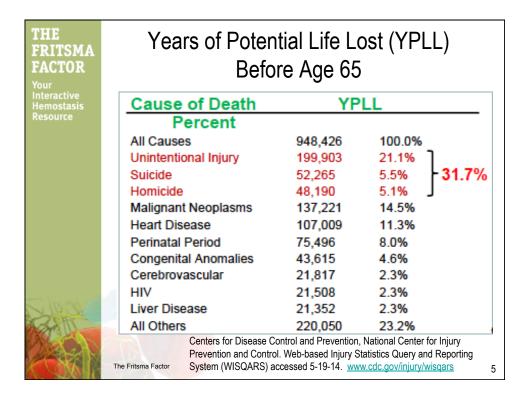
- In the USA, 36,000,000/y (1/7) suffer significant injury
- 27,000,000 injury-related doctor or hospital visits
- 1,700,000 injury-related hospital admissions
- 1,000,000 are transferred to trauma centers
- 10,000 require massive transfusion
- Extent of injury is determined by whole body CT scan or focused abdominal sonography for trauma (FAST)

Zimrin AB, Bai Y, Holcomb JB, Hess JR. Hemorrhage control and thrombosis following severe injury. In Kitchens CS, Kessler CM, Konkle BA. Consultative Hemostasis and Thrombosis. Elsevier, 2013

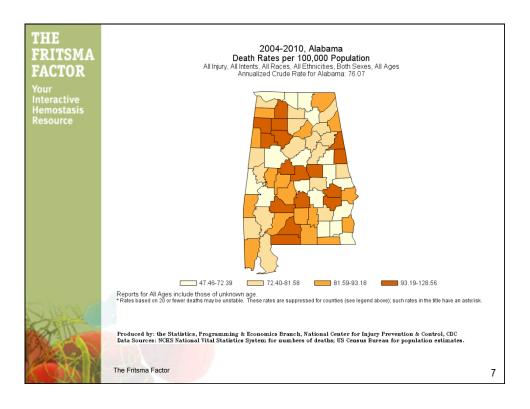
3

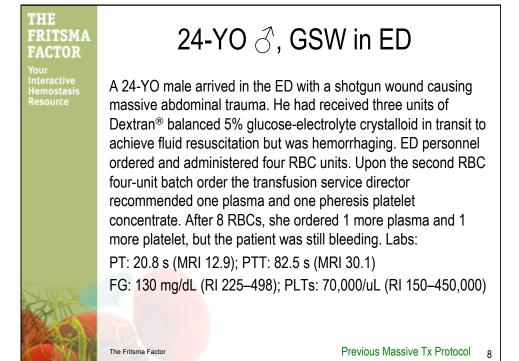
THE FRITSMA FACTOR

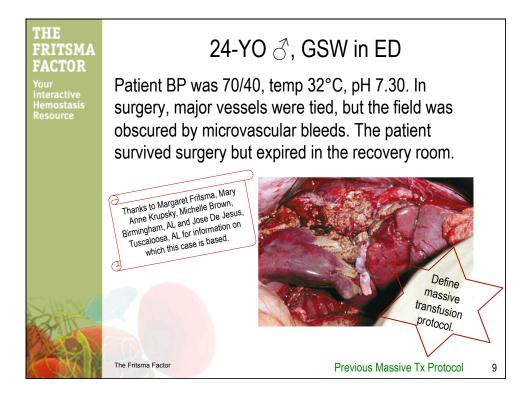
Interactive Hemostasis Resource

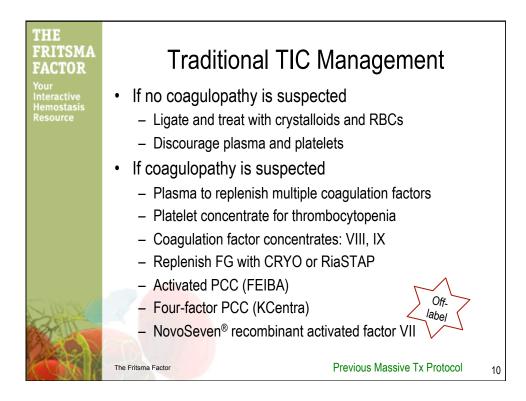

Death by Trauma

- Unintended or intentional injury is the most common cause of death in N Americans age 1–45
 - 93,000/y in the USA, up 20% since 2005
 - 3,000,000/y worldwide, exceeded only by AIDS deaths
- 50% of trauma deaths are caused by neurological displacement and occur before reaching hospital
- 20,000 die in hospital of exsanguination in 48 h
 - 30-35% with blood loss & uncompensated shock expire
 - 3-4,000 of US hemorrhage deaths are preventable
 - Coagulopathy, failure to achieve hemostasis


Rhee P, Joseph B, Pandit V, et al. Increasing trauma deaths in the United States. Ann Surg 2014;260: 13–21.


The Fritsma Factor


4



THE FRITSMA FACTOR Your Interactive Hemostasis Resource		Age Groups										
	Rank	<u><1</u>	<u>1-4</u>	<u>5-9</u>	10-14	<u>15-24</u>	<u>25-34</u>	<u>35-44</u>	<u>45-54</u>	<u>55-64</u>	<u>65+</u>	All Ages
	1	Congenital Anomalies 4,758	Unintentional Injury 1,316	Unintentional Injury 746	Unintentional Injury 775	Unintentional Injury 11,619	Unintentional Injury 16,209	Unintentional Injury 15,354	Malignant Neoplasms 46,185	Malignant Neoplasms 113,324	Heart Disease 488,156	Heart Disease 611,105
	2	Short Gestation 4,202	Congenital Anomalies 476	Malignant Neoplasms 447	Malignant Neoplasms 448	Suicide 4,878	Suicide 6,348	Malignant Neoplasms 11,349	Heart Disease 35,167	Heart Disease 72,568	Malignant Neoplasms 407,558	Malignant Neoplasms 584,881
	3	Maternal Pregnancy Comp. 1,595	Homicide 337	Congenital Anomalies 179	Suicide 386	Homicide 4,329	Homicide 4,236	Heart Disease 10,341	Unintentional Injury 20,357	Unintentional Injury 17,057	Chronic Low. Respiratory Disease 127,194	Chronic Low Respiratory Disease 149,205
	4	SIDS 1,563	Malignant Neoplasms 328	Homicide 125	Congenital Anomalies 161	Malignant Neoplasms 1,496	Malignant Neoplasms 3,673	<u>Suicide</u> 6,551	Liver Disease 8,785	Chronic Low. Respiratory Disease 15,942	Cerebro- vascular 109,602	Unintentiona Injury 130,557
	5	Unintentional Injury 1,156	Heart Disease 169	Chronic Low. Respiratory Disease 75	Homicide 152	Heart Disease 941	Heart Disease 3,258	Homicide 2,581	<u>Suicide</u> 8,621	Diabetes Mellitus 13,061	Alzheimer's Disease 83,786	Cerebro- vascular 128,978
	6	Placenta Cord Membranes 953	Influenza & Pneumonia 102	Heart Disease 73	Heart Disease 100	Congenital Anomalies 362	Diabetes Mellitus 684	Liver Disease 2,491	Diabetes Mellitus 5,899	Liver Disease 11,951	Diabetes Mellitus 53,751	Alzheimer's Disease 84,767
	7	Bacterial Sepsis 578	Chronic Low. Respiratory Disease 64	Influenza & Pneumonia 67	Chronic Low. Respiratory Disease 80	Influenza & Pneumonia 197	Liver Disease 676	Diabetes Mellitus 1,952	Cerebro- vascular 5,425	Cerebro- vascular 11,364	Influenza & Pneumonia 48,031	Diabetes Melitus 75,578
	8	Respiratory Distress 522	Septicemia 53	Cerebro- vascular 41	Influenza & Pneumonia 61	Diabetes Mellitus 193	HIV 631	Cerebro- vascular 1,687	Chronic Low. Respiratory Disease 4,619	<u>Suicide</u> 7,135	Unintentional Injury 45,942	Influenza & Pneumonia 56,979
	9	Circulatory System Disease 458	Benign Neoplasms 47	Septicemia 35	Cerebro- vascular 48	Complicated Pregnancy 178	Cerebro- vascular 508	HIV 1,246	Septicemia 2,445	Septicemia 5,345	Nephritis 39,080	Nephritis 47,112
	10	Neonatal Hemorrhage 389	Perinatal Period 45	Benign Neoplasms 34	Benign Neoplasms 31	Chronic Low. Respiratory Disease 155	Influenza & Pneumonia 449	Influenza & Pneumonia 881	HIV 2,378	Nephritis 4,947	Septicemia 28,815	Sulcide 41,149

THE FRITSMA FACTOR

American Society of Anesthesiologists 2006 Practice Guidelines

- Use no plasma to augment volume, use colloid or crystalloid expanders (5% dextrose: Dextran®)
 - Plasma only if microvascular bleeding...
 - And PT >1.5X "normal" or PTT >2X "normal"
- Use RBCs when HGB <6 g/dL
- "Usually" give platelets if <50,000/uL, unless...
 - Limited blood loss is anticipated based on type of surgery
 - Thrombocytopenia is associated with HIT, ITP, or TTP, where platelets may be ineffective

Practice guidelines for perioperative blood transfusion and adjuvant therapies: an updated report by the American Society of Anesthesiologists Task Force on Perioperative Blood Transfusion and Adjuvant Therapies. Anesthesiology 2006; 105: 198–208.

The Fritsma Factor

Previous Massive Tx Protocol

11

THE FRITSMA FACTOR

2004 Baghdad Case

- An IED-injured US soldier received 18 RBC units and died of dilutional coagulopathy before plasma could be thawed
- Surgeons and BB director agreed to keep 4 units of thawed AB plasma available at all times
- Initiated 1:1 plasma/RBC Rx; improved resuscitation, reduced hemorrhage, added PLT concentrate 2006
- Reduced crystalloids (Dextran, 5% glucose), reduced lung and tissue edema
- 2006: Joint Theatre Trauma System guideline

Holcomb JB, Jenkins D, Rhee P, et al. Damage control resuscitation: directly addressing the early coagulopathy of trauma. J Trauma 2007;62: 307–10. The Fritsma Factor

Massive Tx Protocol

Bottom Line At the Start (BLATS)

- Crystalloid (Dextran®) resuscitation raises blood loss, transfusion requirements, edema, and mortality
- Balanced blood product (BBP) resuscitation reduces blood loss, Tx requirements, and improves survival
- Thawed plasma in the ER (or EMT), time is critical

Holcomb JB, Pati S. Optimal trauma resuscitation with plasma as the primary resuscitative fluid: the surgeon's perspective. Am Soc Hematol Educ Program. 2013; 2013:656–9.

Duchesne JC, Holcomb JB. Damage control resuscitation: addressing trauma-induced coagulopathy. Br J Hosp Med (Lond) 2009; 70: 22–5.

AL RIGHTY)

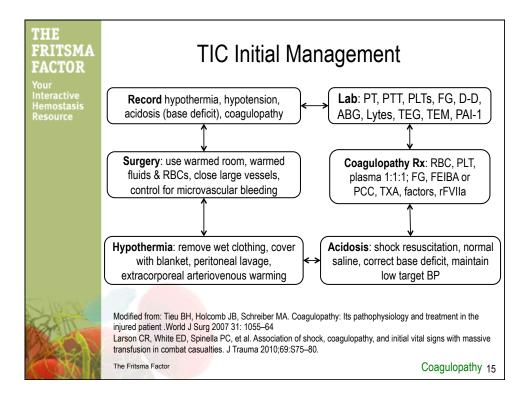
Massive Tx Protocol

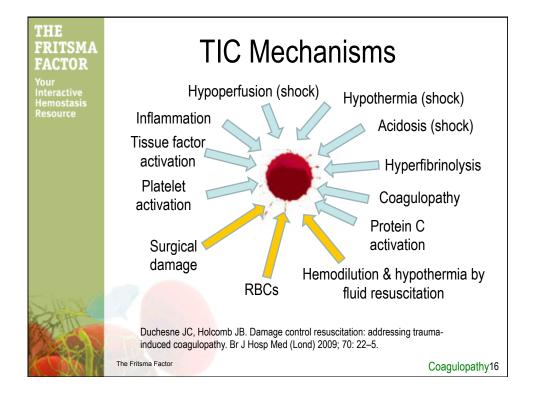
13

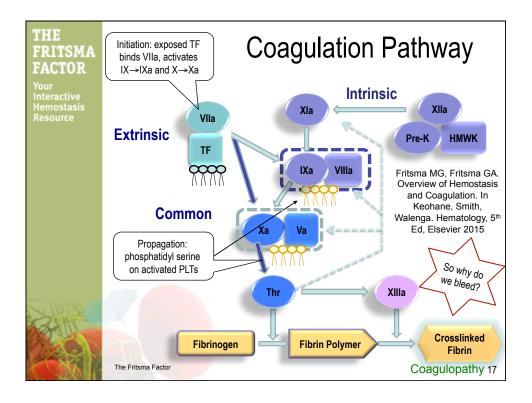
The Fritsma Factor

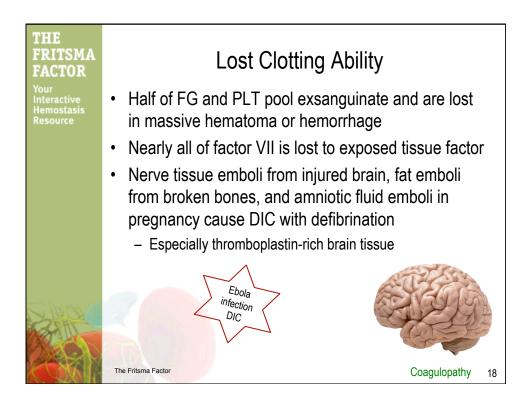
THE FRITSMA FACTOR

Interactive Hemostasis Resource


TIC: Massive Trauma Hematoma or Hemorrhage




Figure 2. Severely injured patients can present with coagulopathy at the time of hospital admission. This soldier arrived in hemorrhagic shock and required massive transfusion with packed red blood cells (pRBC), coagulation products, and whole blood. Tourniquets were placed on the patient's thighs in the field to minimize blood loss.


The Fritsma Factor

Coagulopathy 14

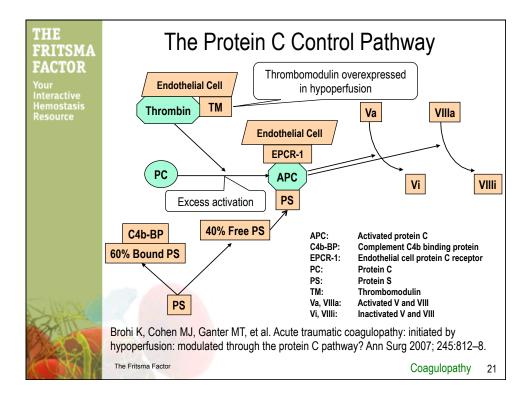
Clotting Factor Dilution

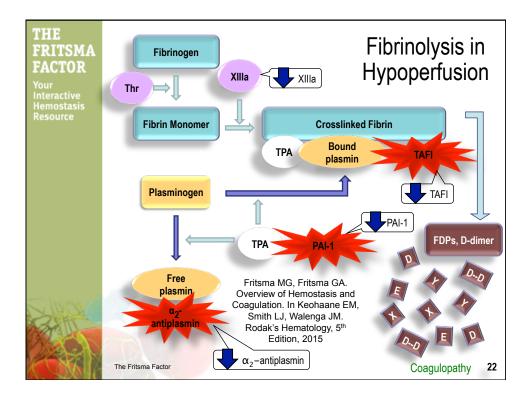
- Hypotension leaves plasma colloid osmotic pressure unopposed. Protein-poor fluid seeps into vasculature, diluting coagulation factors and PLTs
- Crystalloids like 5% dextrose further dilute blood
- Combination of RBCs, plasma, and PLTs at 1:1:1...
 - Donor whole blood is diluted with 67 mL A/C per 450 mL TV
 - Whole blood theoretical best HCT is 28%
 - Coagulation factor activity is diminished to 60%
 - PLT count averages 90,000/uL

Bolliger D, Gorlinger K, Tanaka KA. Pathophysiology and treatment of coagulopathy in massive hemorrhage and hemodilution. Anesthesiology 2010;113:1205–19.

The Fritsma Factor

Coagulopathy




THE FRITSMA FACTOR

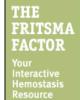
Hypothermia, Acidosis, Fibrinolysis

- All enzyme activity slows at <37°C
- PLT activation slows at 32-34°C
- Platelets cease to bind VWF at 30°C
- Vitamin K-dependent factors II, VII, IX, and X fail to bind phospholipid in acidosis
- Thrombomodulin exposure activates & consumes protein C
- α₂-antiplasmin loss prolongs free plasmin life
- Decreased plasminogen activator inhibitor (PAI-1) prolongs tissue plasminogen activator (TPA) life
- Thrombin consumption lowers TAFI activation
 - Thrombin-activatable fibrinolysis inhibitor
- Factor XIII dilution causes inadequate fibrin crosslinking
 - Fibrin strands are thin, easily digested

Coagulopathy 20

THE FRITSMA FACTOR Your Interactive Hemostasis Resource

Injury Severity Score (ISS)


Region	Description (Examples)	Injury Score (1-6)	Highest 3 Squared		
Head & neck	Cerebral contusion	3 (Serious)	9		
Face	Scratches	1 (Minor)			
Chest	Sucking wound	4 (Severe)	16		
Abdomen	Liver contusion Spleen rupture	2 (Moderate) 5 (Critical)	25		
Extremity	Fractured femur	3 (Serious)			
External		1 (Minor)	1		
Sum		ISS:	50		

Maximum is 75. If injury is assigned a score of 6 (unsurvivable), the ISS is automatically 75. ISS correlates linearly with mortality, morbidity and hospital stay. See also automated revised ISS, TRISS, which incorporates respiration and BP.

Baker SP, et al. The injury severity score: a method for describing patients with multiple injuries and evaluating emergency care. J Trauma 1974;14:187–96

The Fritsma Factor

Coagulopathy 23

Probability of Life-threatening Coagulopathy in Trauma

n = 58, received >10 RBCs Condition:	% Coagulo- pathy*
Injury severity score (ISS) >25 alone	10%
ISS >25 & systolic BP <70 mm Hg	39%
ISS >25 & body temp <34°C	49%
ISS >25 & pH <7.10	58%
ISS >25; SBP <70 mm Hg; body temp <34°C	85%
ISS >25; SBP <70 mm Hg; temp <34°C; pH <7.10	98%
*Life-threatening coagulonathy is arbitrarily defined as	PT and PTT

*Life-threatening coagulopathy is arbitrarily defined as PT and PTT >2X mean of reference interval (MRI)

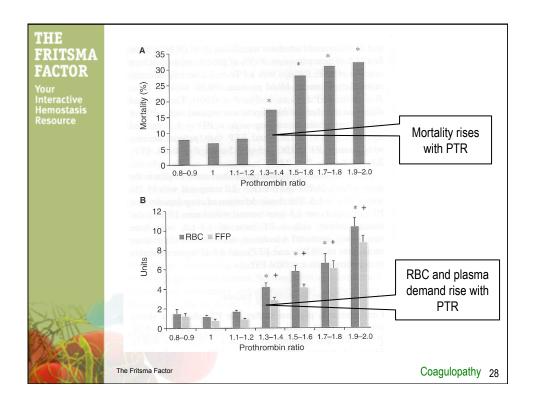
Cosgriff N, Moore EE, Sauaia A, et al. Predicting life-threatening coagulopathy in the massively transfused trauma patient: hypothermia and acidosis revisited. J Trauma 1997;42:857–62.

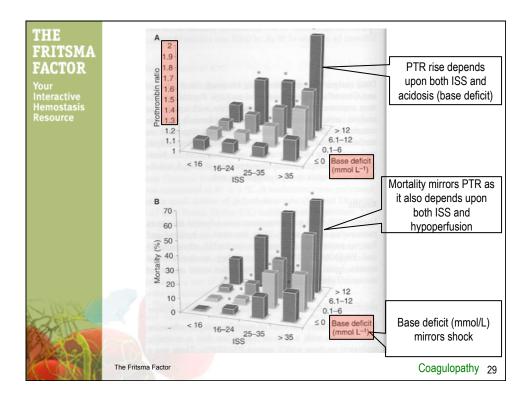
The Fritsma Factor

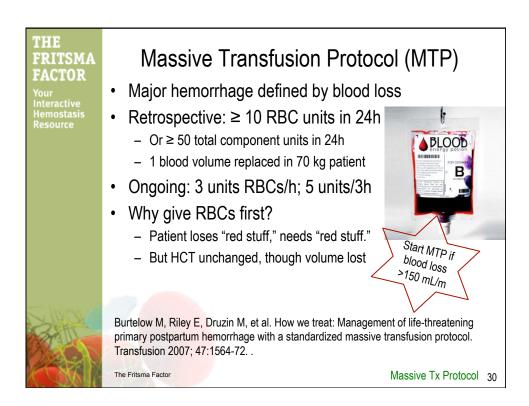
Coagulopathy 24

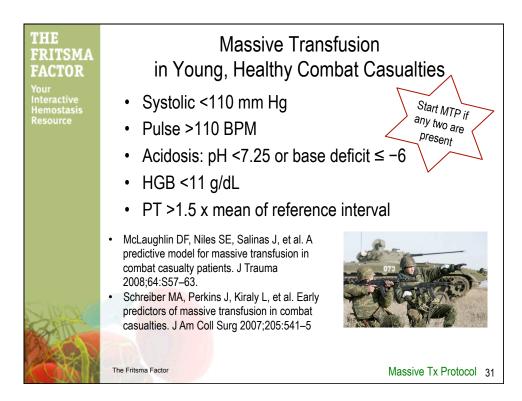
Coagulopathy in Trauma

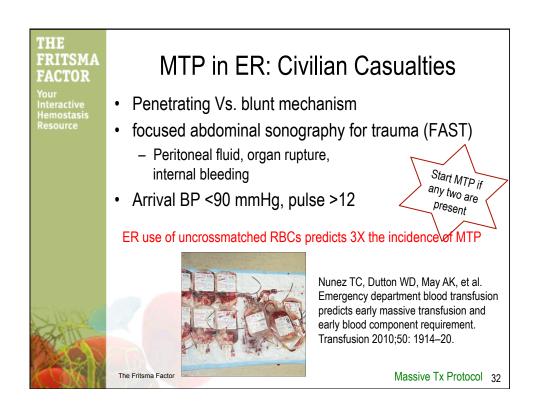
ISS & Coagulopathy n = 1088	% Coagulopathy by Lab Assay*		
ISS >15; median 20	57.7%		
ISS <15	10.9%		
Coagulopathy at Admission	% Mortality		
Yes (24.4%)	46%		
No	10.9%		
Overall mortality	19.5%		


*Coagulopathy defined independent of fluid replacement as: PT >18s,16.3%; PTT >60s, 24.4%; or thrombin time >15s, 14.2%


Brohi K, Singh J, Heron M, Coats T. Acute traumatic


The Fritsma Factor coagulopathy. J Trauma 2003; 54: 1127–30 Coagulopathy 25


THE **FRITSMA** PT and PTT Predict Mortality **FACTOR** Review of 7638 level I trauma admissions Initial PT >14s: 28% of admissions - 6.3% of patients with PT <14s died - 19.3% of patients with PT >14s died Independent mortality increase 35%; OR, 3.6; p <0.0001 · Controlled for age, ISS, BP, HCT, pH, and head injury Initial PTT >34s: 8% of admissions Independent mortality increase 326%: OR 7.8: p <0.001 MacLeod JB, Lynn M, McKenney MG, et No coagulopathy al. Early coagulopathy predicts mortality in trauma. J Trauma 2003;55:39-44. Coagulopathy The Fritsma Factor Coagulopathy 26


THE FRITSMA Definition and "Drivers" of TIC **FACTOR** Retrospective cohort study - 3646 trauma patients at 5 international trauma centers - TIC = PTR >1.2; correlates with ISS and shock Prothrombin time ratio (PTR) >1.2 - Mortality 22.7% C 30 Vs. 7.0%, p < 0.001 25 - RBC use 3.5 versus € 20 1.2 units, p < 0.001 Prevalence 15 - Plasma use 2.1 versus 10 0.8 units, p < 0.001 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 Prothrombin ratio Frith D, Goslings JC, Gaarder C, et al. Definition and drivers of acute traumatic coagulopathy: clinical and experimental investigations. J Thromb Haemost 2010;8: 1919-25. Coagulopathy 27

THE FRITSMA FACTOR Your Interactive Hemostasis Resource

Intraoperative RBC Transfusion Risks

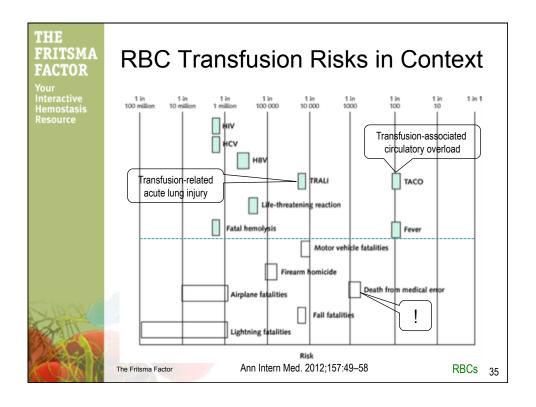
Independent Outcome	RBCs	No RBCs		
Sepsis	16.4%	9.8%		
Pulmonary complication	12.6%	6.0%		
Wound complications	9.2%	4.7%		
Mortality	6.4%	4.4%		
Thromboembolic disease	4.0%	1.9%		
Renal complications	2.7%	1.9%		
Cardiac complications	2.1%	1.4%		
30-day outcomes, all significant at p <0.05				

Glance LG, Dick AW, Mukamel DB, et al. Association between intraoperative blood transfusions and mortality and morbidity in patients undergoing noncardiac surgery. Anesthesiology 2011;114:283–92.

RBCs 33

THE FRITSMA FACTOR

Interactive Hemostasis Resource


RBC Transfusion Risks in Trauma

- Tx predicts MOF* when victim survives >24 h
 - *Multiple organ failure
- Tx correlates with 4X rise in ICU admission
- · Mortality rises with each RBC unit
- No patient >75 who gets >12 RBC units survives
- Infection odds ratio 5.26 versus no Tx
- Composite risk of TRALI* and ARDS* 1:5000
 - *Transfusion-related acute lung injury
 - *Acute respiratory distress syndrome

Robinson WP, Ahn J, Stifler A, et al. Blood transfusion is an independent predictor of increased mortality in non-operatively managed blunt hepatic and splenic injuries. J Trauma 2005;58:437–44.

The Fritsma Factor

RBCs 34

THE **RBC** Risks and Indications **FRITSMA FACTOR** Your Interactive Hemostasis Resource Risk Indication Fever, hemoglobinuria, ABO Incompatibility* hemoglobinemia TRALI* or TACO Respiratory distress, hypoxemia **Bacterial contamination** Fever, hypotension Allergic reaction Urticaria Citrate toxicity Hypocalcemia Terminate transfusion and start diagnostic tests *Observe for delayed TRALI and transfusion reaction RBCs 36 The Fritsma Factor

THE Platelet Concentrate FRITSMA FACTOR Clinicians discouraged from giving platelets - Why? "Platelets are a precious commodity." Use early anyway, they stabilize the coagulopathy They've got all the "good stuff" that is in plasma n=237 n=62 Inaba K, Lustenberger T, Rhee P, et al. The impact of platelet transfusions in massively transfused trauma patients. JACS 2010. The Fritsma Factor **PLTs** 37

THE FRITSMA FACTOR

What Does "Plasma" Mean?

- Fresh frozen plasma (FFP)
 - Plasma processed and placed at ≤ –18C within 8 h of collection
 - Plasma from males or nulligravida females to avoid TRALI
 - Largely discontinued 2000–2010, though name lives on
- 24-h plasma (PF24)

The Fritsma Factor

- WB ambient ≤8 h→1-6C ≤16 h→processed→-18C in 24 h
- Most common prep, mis-named FFP by most health care pros
- 24-h plasma (PF24RT24)
 - WB held ambient, processed and placed at –18C within 24 h
 - Released 4/1/2014 for replacement of non-labile coagulation factors

Plasma

- All preparations stored frozen up to 12 months
- Thawed AB plasma: kept at 1–6C; 5 d if closed

Mean Factor V, VIII and Protein S Levels in FFP, PF 24, and PF24RT24

Preparation	Factor V	Factor VIII	Protein S
FFP at thaw	85%	81%	97%
FFP 5d post-thaw	67%	43%	92%
PF24 at thaw	86%	66%	90%
PF24 5d post-thaw	59%	48%	78%
PF24RT24 at thaw	90%	86%	82%
PF24RT24 5d post-thaw	89%	86%	73%

- O'Neill EM, Rowley J, Hansson-Wicher M, et al. Effect of 24-hour whole-blood storage on plasma clotting factors. Transfusion 1999;39:488-91.
- Cardigan R, Lawrie AS, Mackie IJ, Williamson LM. The quality of fresh frozen plasma produced from whole blood stored at 4 C overnight. Transfusion 2005;45:1342–48.

The Fritsma Factor

Plasma

39

THE FRITSMA FACTOR

RBC/Plasma 1:1

- USA hospital in Baghdad Green Zone
 - Tx >2000 wounded, massively Tx >600 wounded
 - Retrospective w/o controls but extensive, careful documentation
- Receiving ≤1 plasma per 4 RBCs: 65% mortality
 - Confounding data: soldiers who received >10 RBC units but died before plasma could thaw are counted in this arm
- Receiving 2 plasma for every 3 RBCs: 19% mortality
 - Confounded: survivors receive more plasma Vs. those who die
 - Requires ~15 h to resolve coagulopathy
 - Surgeons report less bleeding and edema
- Anticipated adverse effects
 - Plasma supply (yes)
 - Transfusion-associated circulatory overload (TACO, yes)
 - No TRALI, anaphylaxis, ARDS, MOF, or thrombosis

Borgman MA, Spinella PC, Perkins JG, et al. The ratio of blood products transfused affect mortality in patients receiving massive transfusions in a combat support hospital. J Trauma 2007; 63: 805–13. The Fritsma Factor

Plasma

nteractive Hemostasis

ASA 2015 Plasma Indications

- Manage preoperative or bleeding pts who require replacement of multiple coagulation factors (eg, liver disease, DIC).
- Manage patients undergoing massive transfusion who have clinically significant coagulation deficiencies.
- Manage bleeding patients taking warfarin or who need an invasive procedure before vitamin K could reverse the warfarin effect (but 4-factor PCC is better).
- Transfusion or plasma exchange in patients with thrombotic thrombocytopenic purpura (TTP)
- Manage patients with congenital or acquired factor deficiencies for which there are no specific coagulation concentrates

- FP24RT24 not indicated for factor VIII or protein S deficiency
Practice guidelines for perioperative blood transfusion and adjuvant therapies: an
updated report by the American Society of Anesthesiologists Task Force on Perioperative
Blood Transfusion and Adjuvant Therapies. Anesthesiology 2015;22:241–75.

Plasma 41

THE FRITSMA FACTOR

Interactive Hemostasis Resource

Plasma Reduces EC Permeability

• Barrier dysfunction, interstitial edema, tissue hypoxia, inflammatory cells

Ebola causes vasodilation

- Infiltration, detached pericytes, extracellular matrix breakdown, apoptosis, exposed subendothelium
- Stabilizes ECs through junction protein regulation

Normal

Shock

Crystalloids

Plasma

Kozar R, Peng Z, Zhang R. Plasma restoration of endothelial glycocalyx in a rodent model of hemorrhagic shock. Anes & Analgesic 2011

Plasma

THE FRITSMA FACTOR

Group AB Plasma When ABO is Unknown

- Group AB from males & nulligravida females
 - Odds of AB plasma TRALI 14.5 X higher than A, B, or O
 - TRALI restrictions first applied 4/1/2014
 - AB = 2.6% of active donors before TRALI restriction
 - AB availability now cut by 33%
- AB demand raised
 - New massive Tx protocols raise plasma demand
 - Maintaining thawed plasma supply in ER
 - Thawed AB diverted to non-ABs on 5th day to avoid waste
- Solution: group A plasma

Zelinski MD, Johnson PM, Jenkins D, et al. Emergency use of prethawed group A plasma in trauma patients. J trauma Acute Care Surg 2013; 74: 69-75.

Plasma

THE FRITSMA FACTOR

Group A Plasma When ABO is Unknown

- Most recipients are A and O, compatible w/ A plasma
- Anti-B titers low in TRALI-restricted population
- B substance in secretors neutralizes anti-B
- Pts may be receiving massive O RBCs anyway
- U Mass, 2008–13 (similar data from Mayo)
 - Emergency release of 358 A plasmas
 - 84% of recipients turned out to be A or O, compatible
 - 23 recipients were B or AB, 11 of these received O RBCs
 - No acute hemolytic transfusion reactions
 - Three weak positive post-transfusion DATs
 - Reduced AB plasma usage 97%

Chhibber V, Green M, Vauthrin M, et al. Is group A plasma suitable as the first option for ememrgency release transfusion? Transfusion 2014; 54: 1751a5ma 44

THE FRITSMA FACTOR

Group A Plasma When ABO is Unknown

- 76 U of Cincinnati PTs received 76 gendernonspecific group AB plasma transfusions, and compared to Mayo trial they had...
 - Lower ratios of arterial O₂ partial pressure to fractional inspired oxygen.
 - Higher rates of sepsis (p=0.024), acute renal failure (p = 0.003), DVT (p = 0.021), and PE (p = 0.013).
 - Longer ICU stays.

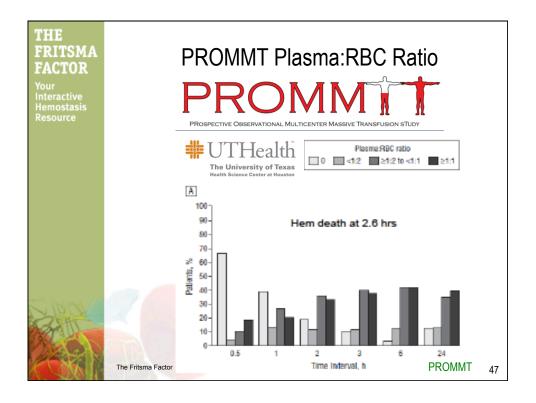
Postma K. Group A plasma: The new universal plasma for trauma patients. 2015 Clin Lab Sci-in process.

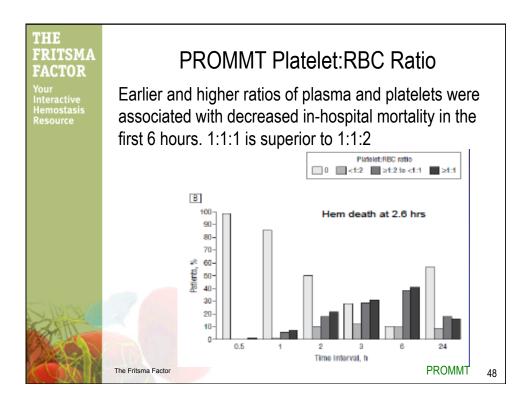
Zielinski M, Johnson P. Emergency use of prethawed Group A plasma in trauma patients. J Trauma Acute Care Surg 2013;741:69–74; discussion 74–5.

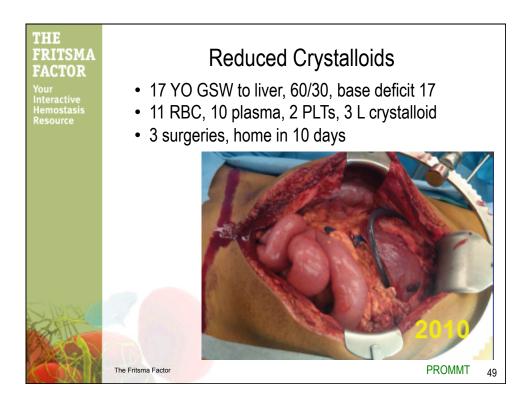
The Fritsma Factor

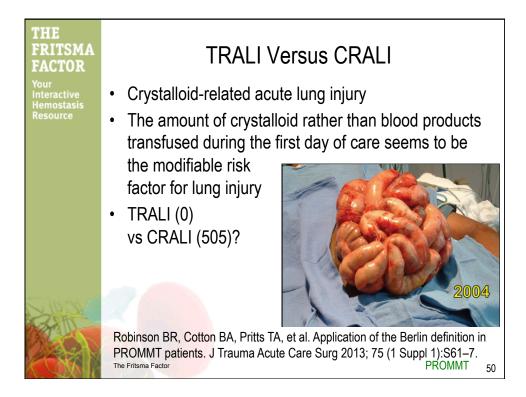
Plasma 45

THE FRITSMA FACTOR


PROMMT Study


- 34,362 trauma admissions, 10 centers 58 wks
- 10% transfused within 6 hours
- 7% received ≥ 3 RBCs
- Overall mortality 25%
 - 94% of hemorrhagic deaths occurred within 24 hours
 - Median time to hemorrhagic death 2.6 h, range, 1.7–5.4 h


Holcomb JB, Del Junco, DJ, Fox EE, et al. Prospective, observational, multicenter major trauma transfusion (PROMMT) study. JAMA Surg 2013; 148:127–36.


PROMMT

The Fritsma Factor

THE FRITSMA FACTOR

Interactive Hemostasis Resource

Updated TIC Rx

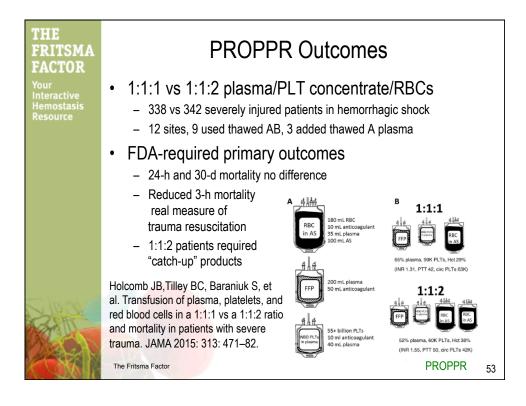
- · Minimize crystalloids by targeting low BP
- · Use plasma, not crystalloids
- Rewarm patient intensively, warm components
- In relatively stable patients, guide Rx w/ repeated CBCs, PTs, PTTs, TEG or TEM
- Rx: BBP: Plasma, PLTs, FG, RBCs 1:1:1:1
- Europe, 4-factor PCC, factor VIII, FG concentrate, rFVIIa (NovoSeven), tranexamic acid (TXA)

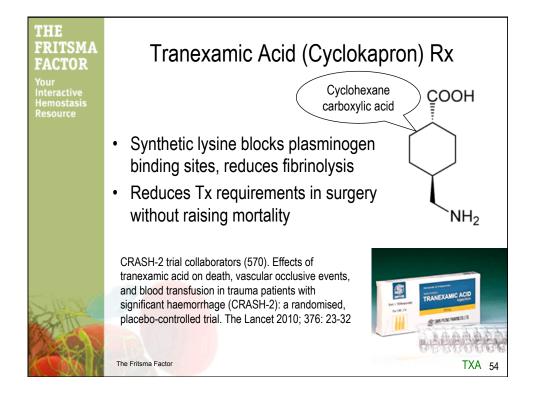
Holcomb JB, Wade CE, Michalek JE, et al. Increased plasma and platelet to red blood cell ratios improves outcome in 466 massively transfused civilian trauma patients. Ann Surg 2008; 248: 447–58

Current Massive Tx Protocol

Offlabel!

THE FRITSMA FACTOR


Interactive Hemostasis Resource


PROPPR Trial: Group A Plasma

- 12 level I trauma centers
- Balanced blood products: 1:1:1 or 1:1:2
 - Plasma : platelet concentrate : red blood cells
- All but 1 delivered 6 u UD plasma and 6 of UD RBCs in 10 minutes
- 3 sites provided 141 group A plasma to AB and B patients, 97 units untitered anti-B
 - No transfusion reactions

Novak DJ, Bai Y, Cooke RK, Marques MB, et al. Making thawed universal donor plasma available rapidly for massively bleeding trauma patients: experience from the Pragmatic, Randomized Optimal Platelets and Plasma Ratios (PROPPR) trial. Transfusion 2015

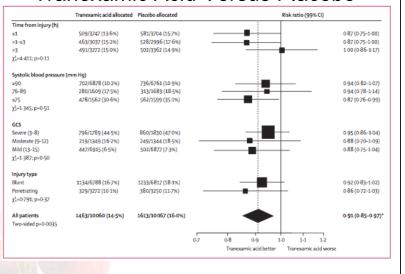
Plasma

THE FRITSMA FACTOR Your Interactive Hemostasis Resource

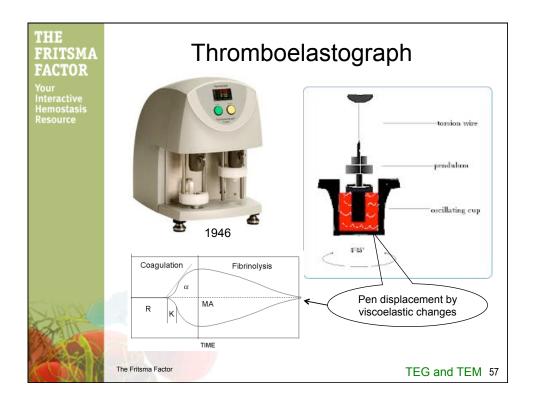
Tranexamic Acid Death by Cause

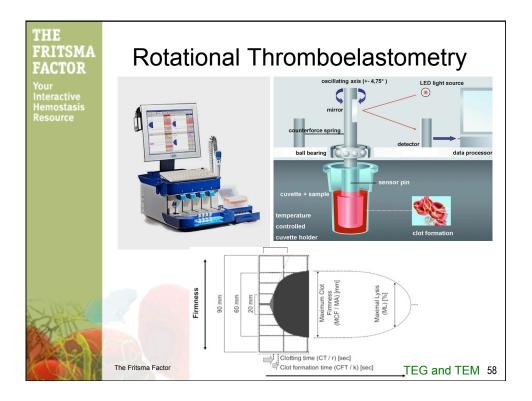
CRASH-2	TXA	Placebo	RR	р
	n = 10060	n = 10067		
Any cause of death	1463 (14.5%)	1613 (16%)	0.91	0.0035
Bleeding death	489 (4.9%)	574 (5.7%)	0.85	0.0077
Thrombosis death	33 (0.3%)	48 (0.5%)	0.69	0.096

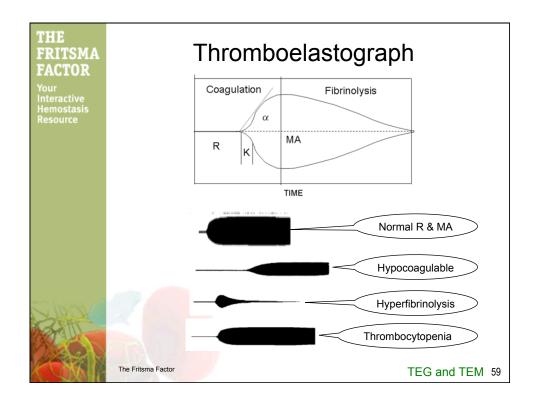
No significant differences in myocardial infarct, stroke, VTE, blood products

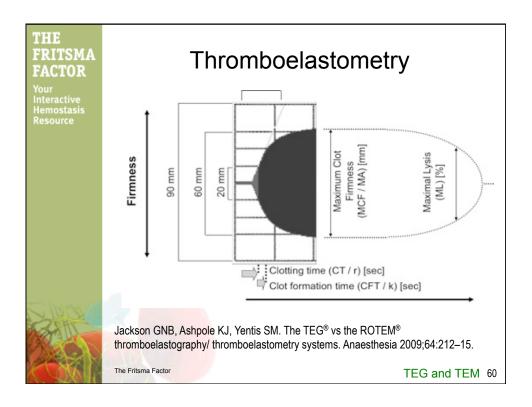

Shakur H, Roberts I, Bautista R, et al. Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant hemorrhage (CRASH-2): a randomized, placebo-controlled trial. Lancet 2010; 376:23–32.

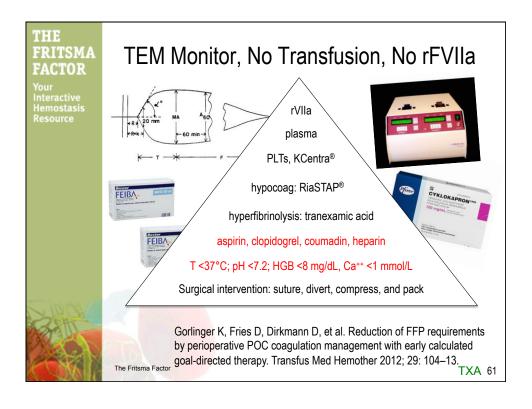
The Fritsma Factor

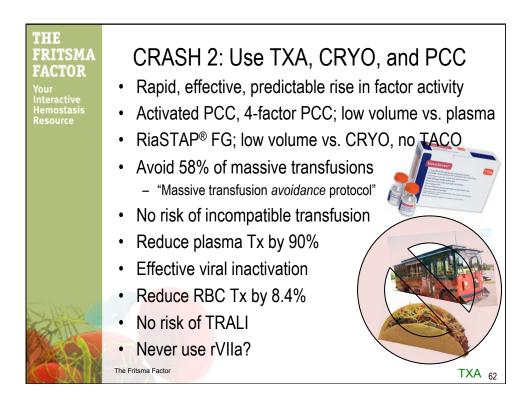

TXA 55



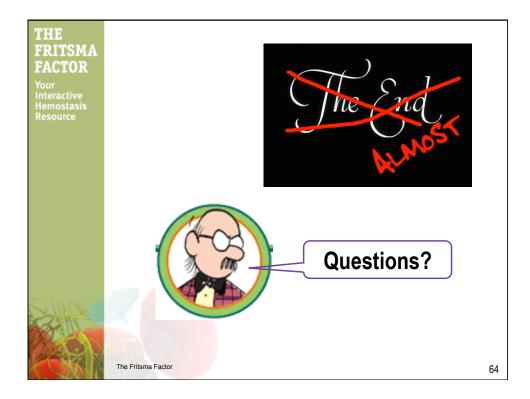

All-cause Mortality by Subgroup Tranexamic Acid Versus Placebo




The Fritsma Factor TXA 56



THE FRITSMA FACTOR Your Interactive Hemostasis Resource


Bottom Line At the End

- Thawed A plasma on site, no crystalloids
- Treat shock: warm patient, pH
- BBP: 1:1:1:1 plasma, RBCs, FG, PLTs
- Factors VIII and IX when necessary
- Tranexamic acid, 4-factor PCC
- Monitor with ROTEM
 - PT and PTT if ROTEM not available
- New study: PROPPR

 Holcomb JB, Tilley BC, Baraniuk S, et al. Transfusion of plasma, platelets, and red blood cells in a 1:1:1 vs a 1:1:2 ratio and mortality in patients with severe trauma: the PROPPR

 The Fritandomized clinical trial. JAMA 2015;313:471–82.

63

