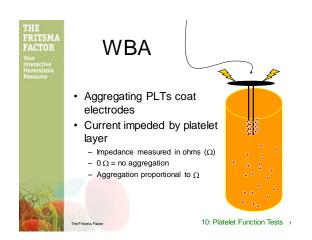
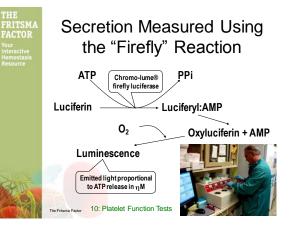
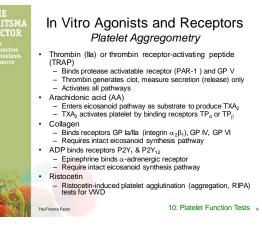


Thanks to Contributors

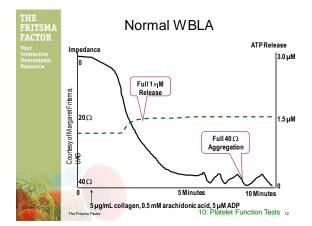
Kathleen Finnegan, MS, MT (ASCP), Stony Brook U, NY

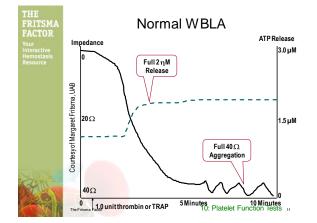

- Kim Kinney, MT (ASCP), Indiana Univ Coag
- Laura Taylor, MT (ASCP), **UAB** Special Coag
- Marilyn Johnston, MS, Hemostasis Ref Lab. Hamilton, ON
- Lynne Quarles, MT (ASCP), Diagnostica Stago
- Vickie Simmons, MT (ASCP), Diagnostica Stago
- Patty Tichenor, MT (ASCP), UAB Special Coag
- Stephan Moll, MD, UNC, www.clotconnect.org

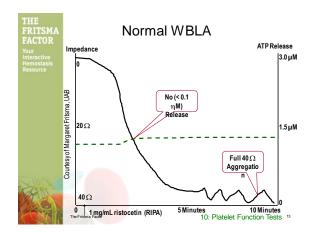


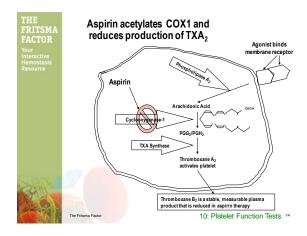


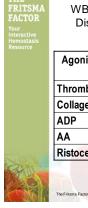
10: Platelet Function Tests 6

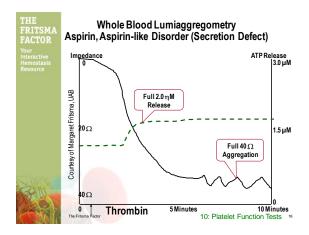

	FRITSMA
	FACTOR
	Your
Г	Interactive Hemostasis
	Resource
⊢	
1	
0	
F	
1	
E	
16	

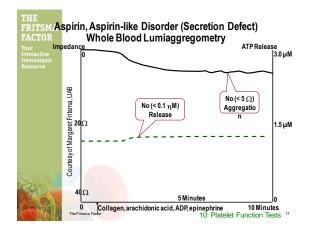

Whole Blood Lumi-Aggregometry (WBLA)
Reference Intervals; Mean ± 2 SD


stasis	Agonist	Conc	Aggregation	Secretion: ATP	
			Impedance	Luminescence	
	Thrombin	1 unit	N/A	1.0-2.0 ηM	
	Collagen	5 μg/mL	15-31 Ω	0.9-1.7 ηM	
	ADP	5 μΜ	1-17 Ω	0.0-0.7 ηM	
	ADP	10 µM	6-24 Ω	0.4-1.7 ηM	
	AA	0.5 mM	5-17 Ω	0.6-1.4 ηM	
	Ristocetin	1 mg/mL	> 10 Ω	[< 70 sec lag]	
	Courtesy of Kathy Jacobs, Chronolog, Inc				


Countesy of Raily Jacobs, Chiloholog, Inc

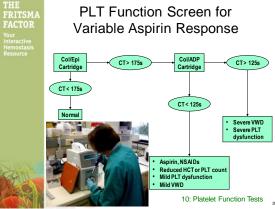

10: Platelet Function Tests 10

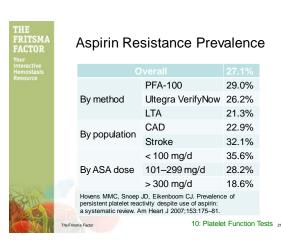


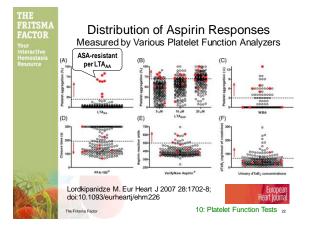


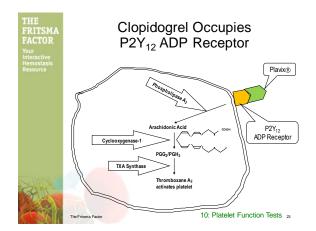
WBLA Anticipated Aspirin or Aspirin-like Disorder (Secretion Disorder) Ranges

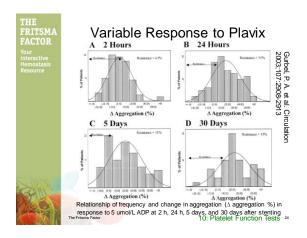
Agonist	Conc	Aggregation Impedance	Secretion: ATP Luminescence
Thrombin	1 unit	N/A	>0.5 ηM
Collagen	5 μg/mL	21-25 Ω	0.3-0.7 ηM
ADP	5 μΜ	1-13 Ω	< 0.1 ηM
AA	0.5 mM	<0.5 Ω	< 0.1 ηM
Ristocetin	1 mg/mL	> 10 Ω	< 70 sec lag
~			

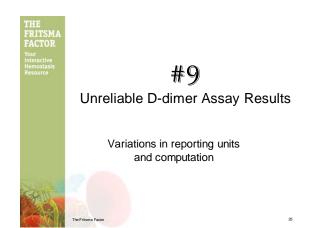

10: Platelet Function Tests 15

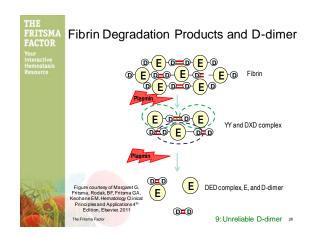












D-dimer Units Are Confusing

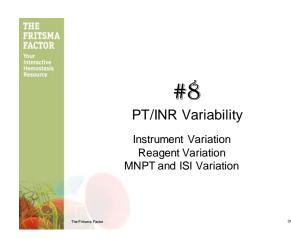
- Fibrinogen equivalent units Vs. D-dimer units based on relative MW
 - FEU: VTE limit is ~500 ng/mL
 - DDU: VTE limit is ~250 ng/mL
 - Some laboratories conflate the two reporting systems
- Unit confusion: ng/mL, ug/mL, mg/dL, mg/L
 Many labs compute report by hand with high error rate
- 39% of labs report a VTE limit higher than the MFR-established limit
 - Many don't know how they generated the limit
- Often the limit is within the lab-generated reference range Cunningham MT, Olson JD. Proficiency testing finds too-high cutoffs. CAP Today. 2005;19:54, 58

9: Unreliable D-dimer

he Fritsma Factor

D-dimer Technology Variability

- Monoclonal antibodies (MABs) vary in affinity and specificity
 - The range of MABs bind FDPs of varying MW
 Identifying all as D-dimer
- · No international standard or calibrator
- · No limit established for DIC
 - Does 2000 ng/mL FEUs (1000 DDUs) indicate DIC?
 D-dimer is an acute phase reactant that rises in inflammation
- Many labs attempt to exclude VTE using semiguantitative card test


Asakura H, Wada H, Okamoto K, et al. Evaluation of haemostatic molecular markers for diagnosis of disseminated intravascular coagulation in patients with infections. Thromb Haemost 2006;95:282-7. 9: Unreliable D-dimer 29 THE FRITSMA FACTOR four nteractive

Solutions to D-dimer Variability A Missed-diagnosis Crisis

- Laboratories *must validate* reporting method, math formulas, VTE thresholds
- Need international D-dimer standard
- Need a single reporting convention
- Need electronic formulas that enable laboratories to report consistent results

9: Unreliable D-dimer 30

www.fritsmafactor.com

THE FRITSMA FACTOR Your Interactive Hemostasis Resource

INR Variation Among Reagents

Diagno	Diagnostica Stago 1997 STA®						
PT, sec	Rgt A	Rgt B	Rgt C	Rgt D			
Mean of 9	16.1	16.9	13.7	17.5			
Patient 10	67.3	81.9	169	78.3			
INR	Rgt A	Rgt B	Rgt C	Rgt D			
Mean of 9	1.5	1.3	1.2	1.5			
Patient 10	31.3	8.7	15.4	9.3			
Sandy Harmon	Sandy Harmon and Lynne Quarles, 1997, unpublished						

8: Variable INR 3

INR = (PT_{Patient}/MNPT)^{ISI}

• Where...

The Fritsma Factor

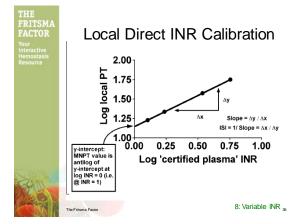
- INR = international normalized ratio
- PT_{patient} = patient prothrombin time
- MNPT = mean normal PT (computed at site)
- ISI = international sensitivity index

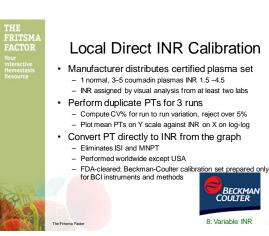
ISI computation

- PT on ≥60 patient specimens in all ranges
- PT on ≥ 20 normals representing both sexes
- Test all ≥ 80 using international reference preparation (IRP) or surrogate and mfr's thromboplastin
- Regress paired results

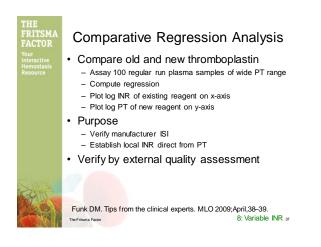
Ansell J, Hirsh J, et al. Pharmacologyand management of antithrombotic therapy: ACCP evidence-based clinical practice guidelines (8th ed). Chest 2008;133:299S–339S

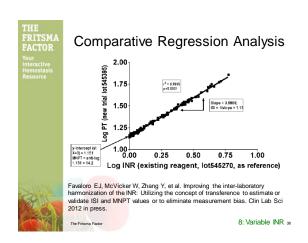
8: Variable INR $_{\scriptscriptstyle 33}$




What Affects the INR?

$CV(INR) = CV(PT/MNPT)^{CV(ISI)}$


- CV could be ≤15% How?
 - PT assay CV ≤5%, 205 when INR >4.5
 - MNPT local computation CV ≤5%
 - ISI manufacturers computation ≤5%. Why?
- IRP PTs are determined visually
 Manufacturers use 2° thromboplastin to compute ISIs
 Some are 2–3 calibration steps away from IRP
- The ISI is generalized from representative coagulometers to local instruments
- CLSI: ISI must be locally validated

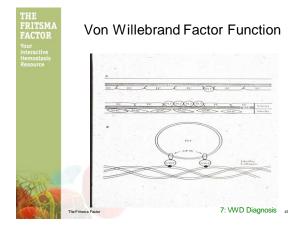

Clinical and Laboratory Standards Institute. Procedures for Validation of INR and Local Calibration of PT/INR Systems; Approved Guideline. CLSI document H54A. 2005. B: Variable INR at Proteine Proc. 8: Variable INR at

36

CTO

#7 von Willebrand Disease Variability

Biological and Technical Variation affection von Willebrand Factor Assays



Von Willebrand Disease (VWD)

- · Autosomal mucocutaneous bleeding caused VWF deficiency or dysfunction
- VWF is a 5-20 million Dalton MW glycoprotein that binds platelets to injury sites and stabilizes coagulation factor VIII
- · VWF deficiency impairs platelet adhesion and reduces FVIII activity
- Prevalence 0.6–1.3% in random population

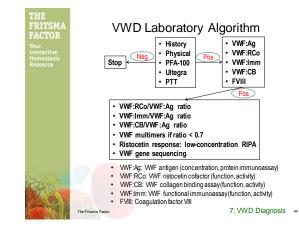
Association of Hemophilia Clinic Directors of Canada, Hemophilia and you Willebrand disease: 1. Diagnosis, comprehensive care and assessment. Can Med Assoc J 1995;153:19-25 be Fritsma Factor

7: WD Diagnosis 40

VWD Clinical Manifestations

- · Mucocutaneous bleeds traceable to event
- · Severity varies over time & within kindred
- · Symptoms intensified by NSAIDs
- · Symptoms reduced by oral contraceptives
- · Symptoms disappear in 2nd-3rd trimester

Sadler JE, Mannucci PM, Berntorp E, et al, Impact, diagnosis and treatment of yon Willebrand disease. Thromb Haemost 2000:84:160-74



7: WD Diagnosis 42

Bleeding Reported by Healthy Subjects and All Types of VWD

Symptoms	Normals (%)	VWD (%)		
Epistaxis	4.6–22.7	38.1–62.5		
Menorrhagia	23-68.4	47–60		
Bleeding after dental extraction	4.8–41.9	28.6–51.5		
Ecchymoses	11.8–50	49.2–50.4		
Bleeding from minor cuts or abrasions	0.2–33.3	36		
Gingival bleeding	7.4–47.1	26.1–34.8		
Postoperative bleeding	1.4–28.2	19.5–28		
Federici AB. Clinical diagnosis of von Willebrand disease. Haemophilia 2004;10 (Suppl 4):169–76. T: WVD Diagnosis				

Type 1 VWD Profile (70%)

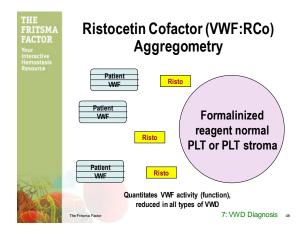
Assay	Patient	RI		
VWF:Ag	34%	65–140 Units/dL		
VWF:RCo	37%			
VWF:CB	39%			
VWF:Imm	32%			
VWF:RCo/VWF:Ag	1.08	Type 2 < 0.7		
VWF:Imm/VWF:Ag	0.94	Type 2 < 0.7		
VWF:CB/VWF:Ag	1.14	Type 2 < 0.7		
Factor VIII	38%	55-150%		
RIPA	< 60% Agg	> 60% Agg		
VWF multimers	Not done; use only when VWF:RCo/VWF:Ag is < 0.7			

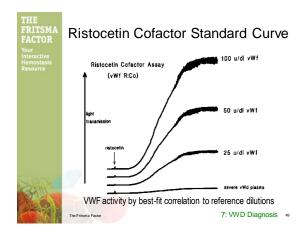
7: WD Diagnosis 45

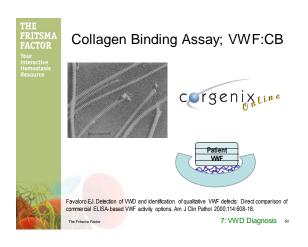
The Fritsma Factor

2004–2009 NASCOLA VWD Proficiency Test CVs

Assay	Normals (7 Surveys)	Type 1s (7 Surveys)	Type 2s (3 Surveys)
VWF:Ag	11%	15%	19%
VWF:RCo	20%	30%	42%
VWF:Imm	15%	14%	49%
VWF:CB	21%	14%	30%
VWF:RCo/VWF:Ag	22%	32%	49%
VWF:Imm/VWF:Ag	19%	20%	53%
VWF:CB/VWF:Ag	23%	12%	43%


Chandler WL, Peerschke EI, Castellone DD, Meijer P; NASCOLA Proficiency Testing Committee. Von Wilebrand factor assay proficiency testing. The North American Specialized Coagulation Laboratory Association experience. Am J Clin Pathol 2011;135:862-9.


7: VWD Diagnosis 46


THE FRITSMA FACTOR Vaur Interactive Hemostasis Resource

2004–2009 NASCOLA VWD Proficiency Test Interpretations

Assay	Interpretation	Normal (7 Surveys)	Type 1 (7 Surveys)	Type 2 (3 Surveys)		
100/5-0-	Normal	325	38 (14%)	11 (9%)		
VWF:Ag	Abnormal	0	272	130		
VWF:RCo	Normal	246	10 (4%)	1 (1%)		
VVVF:RCO	Abnormal	5 (2%)	226	106		
VWF:Imm	Normal	47	1 (2%)	0		
	Abnormal	0	42	22		
WF:CB	Normal	35	2 (6%)	0		
VWF:CB	Abnormal	0	32	19		
Marques MB, Fritsma GA. Von Willebrand disease laboratory diagnosis: the saga continues. Am J Clin Pathol 2011:135.818–20.						
The Fritsma Factor 7: WWD Diagnosis 47						

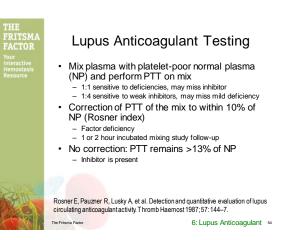
VWF Activity Immunoassay HemosIL[®] VWF Activity

Automated 12-minute immunoassay

- Anti-VWF monoclonal Ab on latex particles
 Directed against patient VWF GP lb receptor ligand
 - Agglutination proportional to VWF activity
 - Transmitted light scattered by agglutinates
- · Compares favorably with the VWF:RCo

De Veeschauwer A, Devreese K. Comparison of a new automated von Willebrand factor activity assay with an aggregation von Willebrand ristocetin cofactor activity assay for the diagnosis of von Willebrand disease. Blood Coagul Fibrinolysis 2006; 17:453-8: esset





Laboratory and Clinical Solutions

- Improve VWF:Imm, VWF:CBA
- Use WHO standard for VWF:RCo
- · Repeat testing to confirm, test kindred
- Physical stress, surgery, exercise, anxiety, inflammation, pregnancy, OCs raise VWF
- Lowest on days 1–4 of menstrual cycle
- Clinical consideration: 30%–50% is named "Low VWF"

US Department of Health and Human Services National Institutes of Health National Heart, Lung, and Blood Institute. The Diagnosis, Evaluation, and Management of vom Willebrand Disease. 2007. NIH Publication 08-5832 The Frisma Faster 7: WVD Diagnosis 22

www.fritsmafactor.com

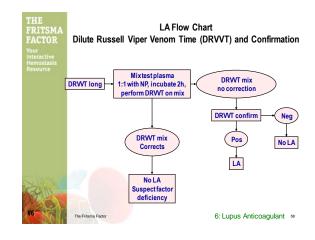
THE FRITSMA FACTOR Your Interactive	LA-sens	sitive Partia	LA Flow Chart I Thromboplastin Ti t LA [®] Integrated Sy	· ·
remostaris Resource	PTT-LA®long Thrombintime TTLong1 Hepzyme® Hepzyme Hepzyme® Hepzyme Hep	prolon 2. If the S	Mixtest plasma 1:1 with NP, incubate 2h, PTT-LA mix corrects No LA Suspect factor deficiency VTis normal, proceed to Hepzy ged, Hepzyme is unnecessary, stactot LAis positive and the Do	RVVTis negative, assay
#6	The Fritsma Factor			upus Anticoagulantes

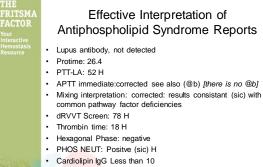
Lupus Anticoagulant Testing PTT Screening Reagent Survey

LAC Responsiveness	Example Reagents	CAPa 2008	CAPa 2009	CAPa 2010	CAPa 2011	Survey
High	Siemens Actin FSL® Beckman-Coulter HemosIL® APTT-SP	2019 (53%)	2015 (51%)	2023 (48%)	1902 (46%)	9 (10%)
Intermediate	Stago STA®-PTT-LA Beckman-Coulter HemosILSynthASil®	1491 (39%)	1647 (41%)	1854 (44%)	1954 (47%)	39 (43%)
Low	Siemens Actin FS® Stago C. K.Prest®	150 (4%)	127 (3%)	132 (3%)	125 (3%)	17 (18%)
Don't Know						26 (29%)

Fritsma GA, Dembitzer FR, Randhawa A, et al. Appropriate APTT reagent selection and utilization. Submitted to Clin Chem 8/31/11

Lupus Anticoagulant Testing PTT Screening Reagent Survey


Table 3: APTT reagent usage among laboratories that use both low and high LAC responsive reagents: Fritsma Factor survey respondents


	Number of Laboratories*		
	Low LAC High LAC		
	Responsiveness	Responsiveness	
Screen for intrinsic coagulation factor deficiency	20	1	
to predict bleeding risk			
Monitor standard unfractionated heparin therapy	17	2	
Screen for LAC to predict thrombosis risk	2	18	
All three	7		
*I aboratorias represent a subgroup (32%) of all su		L	

sent a subgroup (32%) of all survey respondents

Fritsma GA, Dembitzer FR, Randhawa A, et al. Appropriate APTT reagent selection and utilization. Submitted to Clin Chem 8/31/11 ma Factor

6: Lupus Anticoagulant 57

- cardiolipin IgM Less than 10

6: Lupus Anticoagulant 99

en

Monitoring Heparin Therapy

The PTT and Anti-Xa

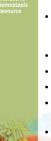
^{6:} Lupus Anticoagulant 56

THE FRITSMA FACTOR Your nteractive Hemostasis Resource

Lab Tests Used to Monitor UFH

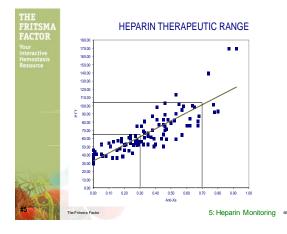
- PTT: responds to effect of heparinantithrombin on thrombin and Xa
- Activated clotting time (ACT, surgical suite)
 Normal mean 120 sec
 Angioplasty: 200–300 sec
 - Angioplasiy. 200–300 sec
 Coronary bypass, heparin at 5 Units/mL: 480 sec
- Chromogenic anti-Xa heparin assay
 Therapeutic range 0.3–0.7 Units anti-Xa heparin/mL

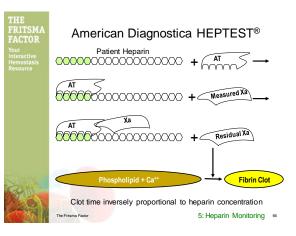
5: Heparin Monitoring 62


Anti-Xa Heparin Assay Performance Characteristics

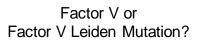
- May be calibrated for UFH, LMWH, or pentasaccharides
- Not affected by inhibitors, factor deficiencies, or elevated factor levels
- Reliance on patient antithrombin means test
 is sensitive to antithrombin deficiency

Brill-Edwards P, et al. Establishing a therapeutic range for heparin therapy. Ann Intern Med 1993;119:104-109 Entriuma Factor 5: Heparin Monitoring @


he Fritsma Factor


ACTO

Establishing The PTT Heparin Therapeutic Range


- Collect ≥ 50 heparin patient specimens
 All dosage ranges
 No oral anticoagulant, PT normal
- Collect ≥ 20 normals, both sexes
- Perform PTT and anti-Xa heparin on all
- Prepare linear graph of paired results
 Correlate PTT range to the anti-Xa
- therapeutic range of 0.3–0.7 Units/mL
- Prophylactic range 0.1–0.4 Units/mL

5: Heparin Monitoring 64

- Factor V activity assay is rarely ordered
 - Liver disease diagnosis
 - Congenital single factor V deficiencies
 - Bovine fibrin glue inhibitor
- Factor V Leiden mutation is often ordered
 The factor V Leiden mutation is present in 3–8% of
 Caucasians, Arabs and Hispanics
 - Confers a 2xto 8x risk of thrombosis
 - 19-fold when homozygous
 - Part of a thrombophilia profile
 - Screen using activated protein C resistance ratio (APCR)

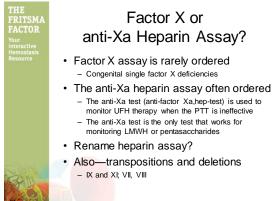
4: Coag Test Names 68

Factor II or Factor II 20210 Mutation?

- Factor II activity assay is rarely ordered
 Congenital single factor II (prothrombin) deficiencies
- The factor II 20210 mutation test is ordered often

 The factor II 20210 (prothrombin) mutation is present in 2–3 % of Caucasians, Arabs and Hispanics and confers a 2- to 4.8-fold risk of thrombosis

- Ordered as part of a thrombophilia profile, same volume as the FVL
- Or: prothrombin Vs prothrombin mutation


4: Coag Test Names @

Protein C Activity, C-reactive Protein, or Activated Protein C Resistance?

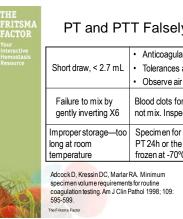
- The protein C activity assay and the APCR are part of the thrombophilia profile
 - Protein C deficiencyReduced APCR predicts factor V Leiden mutation
- C-reactive protein (CRP, hsCRP) is a marker of inflammation ordered as part of a cardiovascular risk profile

4: Coag Test Names 70

4: Coag Test Names n



Coagulation Test Name Solution?


 Logical Observation Identifiers Names and Codes (LOINC[®], www.LOINC.org)

- Universal codes for identifying laboratory and clinical observations
- Mapping terms to LOINC makes it possible to exchange and pool data from many systems for clinical care and research
- Laboratory Medicine Best Practices: CDC
 "Appropriate Laboratory Test Selection: A Major
 Okal wave" and the series of the series
 - Challenge": CDC "Thesaurus" project

4: Coag Test Names 72

PT and PTT Falsely Prolonged

	Anticoagulant/blood ratio exceeds 1:9				
raw, < 2.7 mL	Tolerances are narrow in small tubes				
	Observe air space in butterfly tubes				
e to mix by inverting X6	Blood clots form when AC and blood do not mix. Inspect all specimens for clots.				
er storage-too	Specimen for PTT must be tested in 4h				
oom	PT 24h or the plasma separated and				
iture	frozen at -70°C				

ACTO

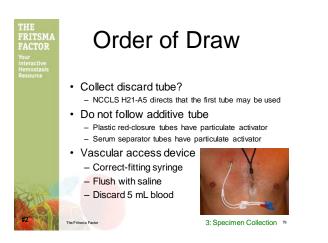
PT and PTT Falsely Shortened

Hemolysis caused by shaking	Hemolysis and platelet activation triggers coagulation at an early stage.			
Hemolysis caused by slow collection, defective equipment	Reject all specimens with visible hemolysis.			
Refrigerating or shipping on ice	Chilling to 4°C activates FVII and precipitates von Willebrand factor.			
Lipemia and icterus	May shorten optical instrumentation results.			

3: Specimen Collection 76

Inadequate Centrifugation

- · Platelets release phospholipids, coagulation factors, and platelet factor 4
 - Phospholipids neutralize lupus anticoagulants
 - PF 4 neutralizes heparin
- · Failure to produce platelet-free plasma - Double centrifugations, centrifuge at 2000 g
- · PTT loses sensitivity for lupus anticoagulants and heparin
- Factor assays inaccurate


3: Specimen Collection 77

Recollects

- · Factor V mutation (Leiden) assay may require EDTA, but blue-stoppered tube is collected or...
- · Factor V mutation (Leiden) collected in citrate tube, lab erroneously centrifuges

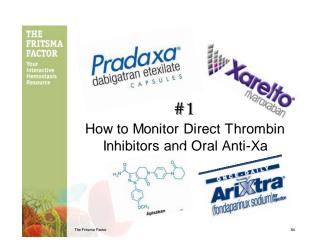
#2 Thrombophilia Profiles

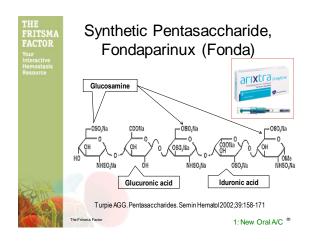
Ordering and Interpreting

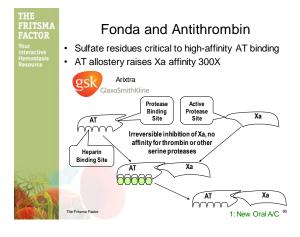
Effective Ordering and Interpretation of Thrombophilia Profiles

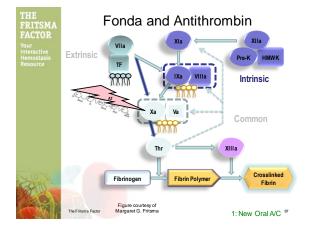
- FVIII and VWF rise during infection and inflammation
- Protein C and antithrombin are consumed in sepsis
 and DIC
- Antithrombin drops in L-asparaginase Rx, hepatic sinusoidal veno-occlusion, nephrotic syndrome
- Acquired APC resistance in pregnancy and OCRs, raised estrogens
- Protein S drops in pregnancy, primary varicella infection
- OCRs odds ratio is 4x, in heterozygous factor V Leiden, 35x
- Obesity, smoking, and immobility have far greater impact than thrombosis risk factors

2: Thrombophilia

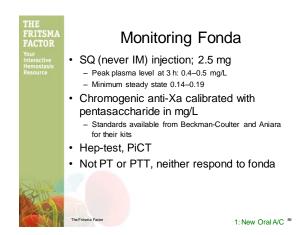

THE FRITSMA FACTOR Your Interactive Hemostasis Resource		Thrombophilia Assays, Prevalence, Risk						
		Assay	Prevalence	Venous Thrombosis Prevalence	Odds for Thrombosis	Comment		
		APCR	3-8% of Caucasians.	20-25%	Het: 2–7× Hom: 18×	Confirm positives with FVL mutation test		
	╞	F II20210	Hispanics, Arabs	4–8%	Het: 2–6×	Molecularassayonly		
		Antithrombin deficiency	1 in 2-5000	1%	10-20×	Do not test during A/C Rx or active		
		Protein C deficiency	1 in 300	1%	6×	clotting Perform immunoassay only when activity is consistently low		
	Γ	Protein S		2-10%	1.6–11.5×			
	ŀ	deficiency lomocysteinemia	Notknown	Notknown	2.5x	Reduction does not change outcome		
	1	LA	1-3%		30%	Acquired		
	1	The Fritsma Factor	17			2: Thrombophilia 82		

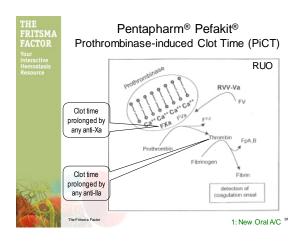


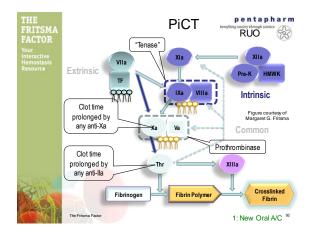

Common Errors in Thrombophilia Testing


- Failure to include all relevant profile members
- Irrelevant assays
 MTHFR C677T: No clinical correlation
 Homocysteinemia: Reducing does not change outcome
- Ordering PC, PS, AT soon after thrombotic event, during inflammation, or while patient is on anticoagulant therapy
- Failure to confirm abnormal screens

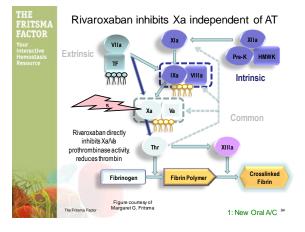

2: Thrombophilia 83

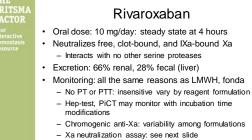


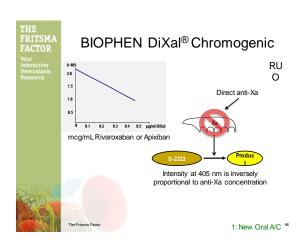


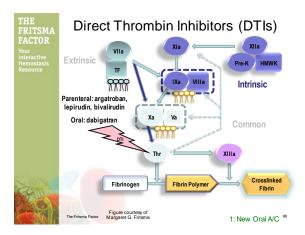


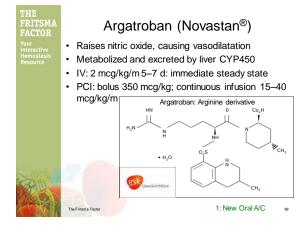
1: New Oral A/C

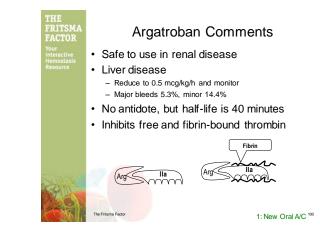


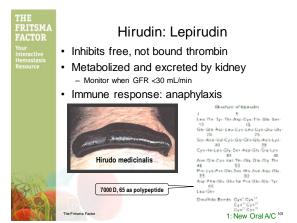


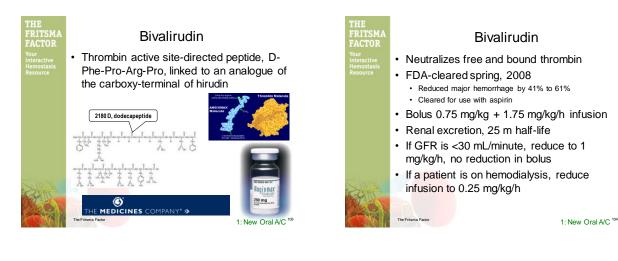


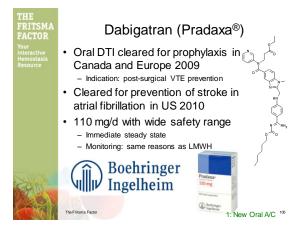

Cleared for VTE prophylaxis; Canada & EU 5/2009

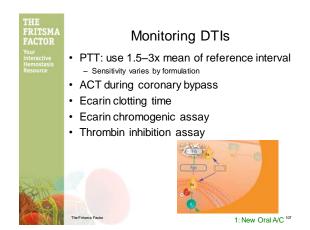

Laux V, Perzborn E, Kubitza D, Misselwitz F. Preclinical and clinical characteristics of Rivaroxaban: Anovel, oral, direct factor Xa inhibitor. Semin Thromb Hemost 2007;33:5115–5123.

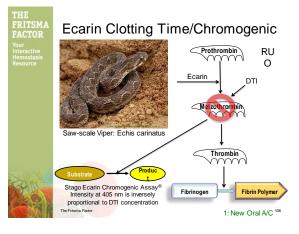

1: New Oral A/C ⁹⁶

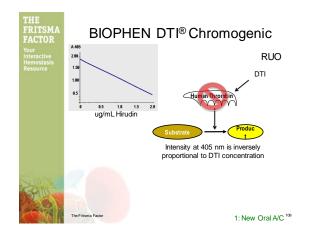


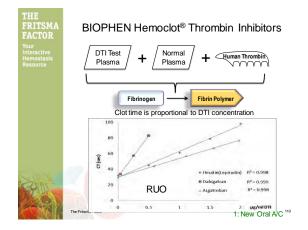












Priverse Pri

