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Abstract
Tissue Factor Pathway Inhibitor (TFPI) is a potent anticoagulant protein that abrogates the activity
of the tissue factor-factor VIIa catalytic complex that activates blood coagulation in vivo. The
importance of TFPI in the regulation of blood coagulation is emphasized by its how its activity is
modulated in human disease. Decreased TFPI activity contributes to the development of both arterial
and venous thrombosis and has been implicated in the thrombotic events occurring in women using
oral contraceptives and in patients with paroxysmal nocturnal hemoglobinuria. Both endothelial cells
and platelets produce TFPI. Our laboratory is interested in the mechanisms for expression of TFPI
on the surface of these cells to better understand how TFPI prevents intravascular thrombosis. Studies
of cultured endothelial cells and human placenta have demonstrated that TFPI associates with the
cell surface through a glycosyl phosphatidyinositol (GPI)-anchor in a manner that is not dependent
on GAGs or altered by heparin. TFPI is not directly bound to the GPI-anchor; instead it appears to
bind tightly to a GPI-anchored protein. This GPI-anchored protein appears to be necessary for proper
trafficking of TFPI to the cell surface. An alternatively spliced form of TFPI, TFPIβ, is a truncated
form of TFPI that is directly attached to a GPI-anchor. However, it is not clear that human endothelial
cells produce TFPIβ. Platelets produce TFPI but not TFPIβ. TFPI is expressed on the platelet surface
following dual activation with collagen plus thrombin, but not through a GPI-anchor. Studies using
mouse models of TFPI deficiency are currently being conducted in our laboratory to determine if
distinct physiological functions of endothelial and platelet TFPI exist in vivo.

Structure and Function of TFPI
Tissue factor pathway inhibitor (TFPI) is a 276 amino acid (~43 kDa) protein with an acidic
N-terminal region followed by three tandem Kunitz-type serine protease inhibitory domains
and a basic C-terminal region. As such, each individual Kunitz domain is homologous to
aprotinin, the prototypical Kunitz-type serine protease inhibitor. TFPI abrogates blood
coagulation by directly inhibiting factor Xa (fXa) with the second Kunitz domain and, in a fXa
dependent manner, inhibiting TF-fVIIa with the first Kunitz domain.1 The third Kunitz domain
has not been shown to function as a protease inhibitor. Its unique mechanism for inhibition of
both fXa and TF-fVIIa makes TFPI the only physiologically active inhibitor of the initiation
of blood coagulation.2
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TFPI in the Pathophysiology of Disease
Treatment of Bleeding in Patients with Hemophilia

A classic question in the blood coagulation field has been: If TF-fVIIa is the primary initiator
of blood clotting in vivo and also is a potent activator of fX, independent of fVIII or fIX, then
why do hemophiliacs bleed? The discovery and characterization of TFPI activity has answered
this question.3 The rapid inhibition of fXa and TF-fVIIa and the extrinsic pathway by TFPI
produces the requirement for propagation of coagulation through fVIIIa and fIXa of the
intrinsic pathway. In vitro studies have demonstrated that reduction of the inhibitory effect of
TFPI is a viable strategy for prevention of bleeding in patients with hemophilia.4;5 In vivo
animal studies have demonstrated that anti-TFPI antibody shortens the bleeding time in rabbits
with antibody induced hemophilia A.6 In the context of patients with hemophilia, the success
of recombinant fVIIa therapy of patients with acquired inhibitors of fVIII or fIX has
demonstrated the tissue factor pathway as an important target for treatment and suggests that
therapeutic modulation of TFPI activity could be an attractive therapeutic target for the
development of new therapies to prevent bleeding in patients with hemophilia.

Thrombosis Associated With Use of Oral Contraceptives
The plasma TFPI concentration decreases about 25% in women using oral contraceptives. The
decrease in TFPI mediated anticoagulant activity in these women may to the increased risk (2-
to 6-fold) of thrombosis associated with the use of oral contraceptives.7–11 The physiological
basis for the decrease in plasma TFPI is not known. Heritable thrombophilias are known to
increase a woman’s risk for thrombosis when using estrogen therapies. Of these, the factor V
Leiden (FVL) mutation, an altered form of FV resistant to degradation by activated protein C,
produces the most significant risk. In oral contraceptive users with FVL the risk of thrombosis
is about 5 times that of either risk factor in isolation.12;13 Animal models have demonstrated
that decreased TFPI in the presence of FVL provides a key “second hit” that produces a severe
thrombotic state. Mice with heterozygous deficiency of TFPI (TFPI+/−) develop normally and
do not suffer from spontaneous thrombosis.14 Mice genetically altered to produce the FVL
mutation have a mild prothrombotic phenotype, exhibiting occasional spontaneous thrombosis.
15 However, when the FVL mutation is bred into TFPI+/− mice, the mice suffer from severe
disseminated thrombosis and nearly complete perinatal mortality.16 These studies in
genetically altered mice support the notion that decreased TFPI contributes to increased risk
for thrombosis associated with oral contraceptive use.

Thrombosis Associated with Paroxysmal Nocturnal Hemoglobinuria (PNH)
Patients with PNH have a pronounced predisposition to intravascular thrombosis. PNH is an
acquired clonal disease characterized by lack of glycosyl phosphatidylinositol (GPI)-anchored
protein expression. The thromboses occur in an organ specific pattern. Most occur in the portal
circulation (hepatic vein occlusion, also called the Budd-Chaiari Syndrome, occurs in 30% of
patients) or in venous circulation of the brain.17 As described below, TFPI is a GPI-anchored
protein. Defective expression of TFPI in patients with PNH and may contribute to the organ
specific thrombosis observed in this disease.18

Association of TFPI Deficiency with Arterial and Venous Thrombosis
TFPI null humans have not been identified suggesting that TFPI is required for human birth.
However, low plasma levels of TFPI are weakly linked to disease in humans. Several studies
have suggested that plasma TFPI levels may demonstrate a “threshold effect” where patients
with free (non-lipoprotein bound) plasma TFPI concentration less than 10% of the normal mean
value are at increased risk (~2-fold) for both deep venous thrombosis and myocardial infarction.
19–22 In these studies there is no difference in the mean free plasma TFPI level between the
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disease and control groups. In other published studies there is a considerable amount of
conflicting data about the contribution of plasma TFPI levels and polymorphisms to the
development of thrombosis.23–26 This is likely a result of the wide normal range for plasma
TFPI,27 the various methods for measurement of plasma TFPI28 and the poor correlation
between the soluble plasma TFPI concentration and the amount of cell surface associated
endothelial and/or platelet TFPI.27

TFPI is a GPI-anchored Protein on Endothelium
TFPI is present primarily on the endothelial surface29;30 but is also present on the surface of
monocytes,31 within platelets32 and circulating in plasma.33;34 Studies of cultured
endothelial cells have demonstrated that TFPI associates with the cell surface through a GPI-
anchor in a manner that is not dependent on GAGs or altered by heparin.35–37 However,
heparin infusion results in a prompt 2- to 4-fold increase in circulating TFPI,38 therefore,
another mode for TFPI cell surface association is non-specific interactions with
glycoaminoglycans (GAGs). Since primary endothelial cells can rapidly change phenotype in
tissue culture, we measured heparin-releasable and GPI-anchored TFPI in fresh human
placenta. We found 1) that GPI-anchored TFPI is present at 10 to 100 times the level of heparin-
releasable TFPI; 2) that pretreatment of placenta with phosphatidylinositol specific
phosopholipase C (PIPLC) increases the amount of heparin releasable TFPI by ~3-fold; and
3) that only small amounts of TFPI are released by heparin after PIPLC treatment.39 These
results indicate that TFPI is a GPI-anchored protein. In addition, heparin releasable TFPI likely
represents only a small portion of the total TFPI on endothelium that remains attached to cell
surface glycosaminoglycans after cleavage of the GPI-anchor by endogenous enzymes.

TFPIβ is an alternatively spliced form of TFPI
Endothelial cells also appear to make an alternatively spliced, truncated form of TFPI that is
directly attached to a GPI-anchor.40;41 This form of TFPI, called TFPIβ, contains the first two
Kunitz domains present in full-length TFPI and, therefore, is theoretically able to inhibit both
factor Xa and factor VIIa/TF. The alternative splice occurs following exon 7 that encodes the
connecting region between the second and third Kunitz domains of full-length TFPI. In human
TFPIβ exon 8 encodes a stretch of 12 amino acids followed by a GPI anchor attachment
sequence that is removed in the endoplasmic reticulum. Thus, TFPIβ has only 12 unique amino
acids that are not present in TFPI. Real time PCR measurements of cultured endothelial cells
indicate that TFPIβ mRNA is present at about one-tenth that of TFPI mRNA.41

TFPI Is Indirectly GPI-anchored; TFPIβ Is Directly GPI-anchored
GPI-anchored proteins have N-terminal leader sequences that direct them to the endoplasmic
reticulum. Within the ER, addition of the GPI-anchor to the C-terminal end of the protein is
associated with removal of the C-terminal 17 to 30 amino acids of the protein. There is not a
specific signal sequence among the C-terminal peptides cleaved from proteins during GPI-
anchor attachment. However, a region of 15 to 20 hydrophobic residues at the C-terminus is a
feature common to GPI-anchored proteins.42 TFPIβ contains an appropriate signal for direct
attachment of a GPI-anchor within its alternatively spliced C-terminal region (Figure 2B). In
contrast, TFPI has a very basic C-terminal region without long stretches of hydrophobic amino
acids. Importantly, we demonstrated by western blot analysis with an antibody directed against
the final 12 amino acids of TFPI that the C-terminal region is intact in GPI-anchored TFPI.
39 It has been hypothesized by both us39;43 and others35;37;41 that TFPI is attached to the
GPI-anchor indirectly by binding to an, as yet, unidentified GPI-anchored co-receptor. The
GPI-anchor attachment of TFPI and TFPIβ localizes them to lipid raft microdomains on the
cell surface.41 Lipid rafts are areas of the plasma membrane rich in glycosphingolipids and
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cholesterol that have been implicated in several cellular functions including signal
transduction.44;45

Most recently, our laboratory has focused on the expression of TFPI in endothelial cells and
platelets to further our understanding of how TFPI present in these two cells regulates the
development of intravascular thrombosis.

Expression of TFPI on Endothelial Cells
In order to further understanding how the GPI-anchored co-receptor and TFPI interact to
produce GPI-anchored TFPI on the endothelial surface, we used aerolysin, a bacterial pore
forming toxin that attacks eukaryotic cells by binding to the glycan core of the GPI-anchor to
produce aerolysin resistant EaHy926 and ECV304 cell lines. These cell lines have served as a
valuable tool for study of the cellular trafficking of TFPI; providing additional new evidence
that TFPI associates with the endothelium indirectly by binding a GPI-anchored co-receptor.
18 Unlike wild type endothelial cells, aerolysin resistant cells do not express TFPI on their
surface and have greatly decreased amounts of total cellular TFPI. Aerolysin resistant and wild
type cells secrete equal amounts of TFPI into the conditioned media. Taken together, these
data suggest that TFPI is degraded within the aerolysin resistant cells. Data obtained from
confocal microscopy of permeabilized cells and experiments with different metabolic
inhibitors suggests that TFPI is produced by aerolysin resistant cells, translocated into the ER,
transported to the Golgi and then degraded within lysosomes along with directly GPI-anchored
proteins.18 Based on the data obtained with the aerolysin resistant cells, we propose that TFPI
cellular trafficking and surface expression is controlled by its GPI-anchored co-receptor. The
wild type and aerolysin resistant cells initially produce normal amounts of structurally sound
TFPI and co-receptor that bind reversibly to each other in the ER/Golgi. In wild type cells the
TFPI/co-receptor complex is expressed on the endothelial surface. In aerolysin resistant cells
this complex is degraded in lysosomes. Lysosomal degradation occurs because of the inability
to produce the GPI-anchor due to a defect in the PIG-A gene,18 a key component of GPI-
anchor biosynthesis. Thus, the aerolysin resistant cells are similar to those present in patients
with PNH that also are not able to produce the GPI-anchor due to PIG-A defects. As described
above, it is possible that TFPI also is degraded within cellular clones of these patients providing
a potential explanation for the thrombotic complications associated with this disease. When
TFPI is transfected into CHO or HEK293 cells it is secreted into the conditioned media instead
of expressed on the cell surface, presumably because these cells do not make the GPI-anchored
co-receptor.41 This suggests that secretion into the conditioned media is the default cellular
processing pathway for TFPI and is consistent with the presence of an N-terminal leader
sequence and the absence of a C-terminal transmembrane domain or GPI-anchor attachment
signal in TFPI. It is important to note that not all of the TFPI is bound to the co-receptor at any
one time due to the reversible nature of the binding interaction. The unbound pool of TFPI is
secreted in a manner similar to that of recombinant TFPI expressed within CHO or HEK293
cells thereby explaining the equal amounts of TFPI secreted by the wild type and aerolysin
resistant cells.

Expression of TFPI in Platelets
We extended our studies of TFPI on the endothelial surface by investigating how TFPI is
expressed on the platelet surface. TFPI is present within platelets accounting for about 10% of
the TFPI present in whole blood.32 Platelet expression of TFPI may be physiologically
important for regulation of circulating TF activity, such as that released in microvesicles from
activated leukocytes or endothelial cells.46 Incorporation of TF bearing microvesicles into the
blood clot is thought to be necessary for effective stabilization of the clot within the vasculature.
47;48 However, inadequate regulation of the procoagulant activity of these microvesicles by
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TFPI may lead to propagation of a hemostatic plug into an occlusive thrombus. We found that
TFPI is expressed on the surface of coated-platelets produced by dual agonist activation with
convulxin and thrombin but not following activation with single agonists. These are the first
data describing TFPI expression on the platelet surface. A brief summary of the results is as
follows. Western blot analysis of gel filtered platelet lysates demonstrates the presence of full-
length, 44 kDa TFPI but not TFPIβ indicating that full-length TFPI is either produced by
megakaryocytes or selectively adsorbed from plasma by platelets. Data demonstrating TFPI
production by megakaryocytes includes real time PCR analysis of cDNA produced from highly
purified human platelets that identified transcripts for TFPI at 63% the level of RPL-19 and
immunofluorescent staining of permeabilized cultured mouse megakaryocytes. Consistent
with the western blot data, message for TFPIβ was not detected by real time PCR. TFPI is not
present on the surface of quiescent platelets as assessed by flow cytometry. TFPI is not released
from platelets or expressed on their surface following stimulation with the thrombin receptor
activating peptide SFLLRN (TRAP) indicating that it is not stored as a soluble α-granule
protein. This was confirmed by confocal microscopy experiments demonstrating that TFPI
does not co-localize with VWF or fibrinogen within platelets. In experiments performed in
collaboration with Dr. George Dale at the University of Oklahoma, we found that TFPI is
consistently present on the surface of coated-platelets, a sub-population of platelets observed
following dual stimulation with thrombin and collagen.49;50 Differential centrifugation
experiments demonstrated that TFPI is released from coated-platelets both in microvesicles
and as a soluble protein. Platelet TFPI activity was measured in multiple individuals by
determining the rate of fX activation by fVIIa-TF. Comparison of quiescent and coated-
platelets demonstrates a significant increase in TFPI activity on the surface the coated-platelets
(11.0+/−0.3 vs. 38.7+/−17.2 pmole/10 million platelets; p<0.005), but no significant increase
in platelets activated with 20 or 200 μM TRAP. Thus, platelets differ from endothelial cells in
regards to TFPI expression in the following ways: 1) platelets contain only TFPI while
endothelial cells have both TFPI and TFPIβ; and 2) platelets express TFPI on their surface only
following dual activation with collagen and thrombin while endothelial cells constitutively
express surface TFPI. Studies using mouse models of TFPI deficiency are currently being
conducted in our laboratory to determine if distinct physiological functions of endothelial and
platelet TFPI exist in vivo.
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