Comparison of Two Chromogenic FVIII Activity Assays to a Standard Clot-based FVIII Activity Assay

DL McGlasson, Wilford Hall Medical Center, Lackland AFB, TX; GA Fritsma The Fritsma Factor, Your Interactive Hemostasis Resource, Birmingham, AL

INTRODUCTION

 Pharmacokinetic FVIII concentrate studies have revealed discrepancies among FVIII assay methods · Clot-based assays of post-FVIII infusion patient plasmas yield results 20-50% below chromogenic assay results

• The choice of phospholipid in clot-based assays is crucial: The use of platelets or liposomes resembling platelet factor 3 instead of traditional PTT reagents raises the factor activity and improves correlation with chromogenic results

• These and other functional and antigenic assay results, coupled with clinical data, support the chromogenic FVIII assay as an accurate therapeutic monitor

• We compared results of the Diapharma Group, Inc. chromogenic Coamatic Factor VIII and the Aniara Hyphen Biomed chromogenic Biophen FVIII:C kits to the Diagnostica Stago, Inc. clot-based FVIII activity assay using a Diagnostica Stago STA-R Evolution coagulation analyzer

• We used a single calibration curve for the clot-based assays and compared results to normal-range and low-range calibration curves for both chromogenic assavs

MATERIALS AND METHODS

Chromogenic kits

- Diapharma Group Inc Coamatic Factor VIII (DP) - Aniara Hyphen Biomed Biophen FVIII:C (AHB)

 Clot-based FVIII:C assay used Diagnostica-Stago, Inc, APTT-A and Diagnostica-Stago FVIII-deficient plasma

 Assays were performed on a Diagnostica-Stago STA-R Evolution Coagulation analyzer

• Samples were comprised of specimens from 33 normal subjects ("normal") and 35 VWD and hemophilic subjects with FVIII:C activities <50% ("low")

CALIBRATION CURVES

 Both chromogenic methods used high and low FVIII:C calibration curves

- DP ranges: 0-153% and 0-23%
- AHB ranges: 7.8–156% and 1–20%

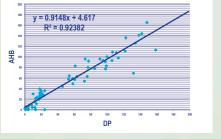
•The clot-based assay used a single FVIII:C calibration curve with 12-95% activity

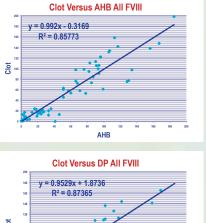
• Specimen were diluted so results were generated from the linear portions of the curves

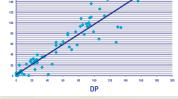
• A fresh calibration curve for all methods was prepared daily

STATISTICS

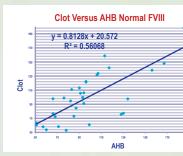
· We used analysis of variance (ANOVA) to compare results of the three assays (p<0.05)

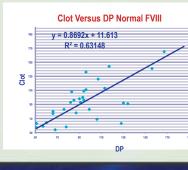

• We used the t-test to compare results of the three assays (p<0.05)

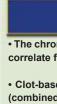

• We compared normal, low and combined sample results generated by the three different assays using regression analysis

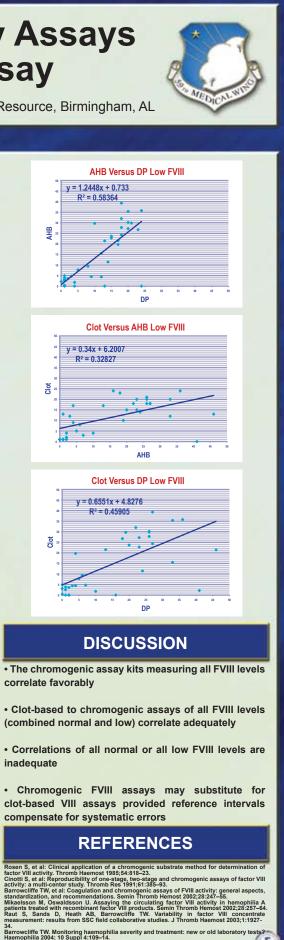

RESULTS


R values on all calibration	t-test	p =
curves were >0.985	AHB AII to DP AII	0.964474
Using ANOVA, there were	Clot All to AHB All	0.745841
no significant differences	Clot All to DP All	0.747154
among the clot-based method and the low	AHB Normal to DP Normal	0.237323
chromogenic curves (p=0.19)	Clot Normal to AHB Normal	0.511527
or the high chromogenic	Clot Normal to DP Normal	0.84004
curves (p=0.78) • t-test illustrates significant differences involving low	AHB Low to DP Low (Significant—p <.05)	0.019672
	Clot Low to AHB Low (Significant—p <.05)	0.033478
samples tested using AHB	Clot Low to DP Low	0.754949









correlate favorably

inadequate

